论文阅读:Visual Translation Embedding Network for Visual Relation Detection

VTransE是一种全卷积的端到端视觉关系检测框架,结合对象检测和关系检测。通过将对象特征转换到关系空间,以简单的转换向量表示关系,降低计算复杂度。该模型包括创新的转移嵌入和联合与分离模型。然而,它存在如处理null关系和缺乏上下文考虑等挑战。
摘要由CSDN通过智能技术生成

VTransE(CVPR 2017)

文章
  Paper自称VtranE是第一个采用full-conv的end-to-end的relation detection架构,是同时进行object detection和relation detection的。VTransE将object特征转换到一个低维的relation空间,在这个空间里,relation可以被建模成简单的转换向量(translation vector),比如:
在这里插入图片描述
直观地表示就如下图:
在这里插入图片描述
注意这里的predicate(谓语)可以是verb,spatial(如above),preposition(如with),comparative(如taller)。可以说visual relation是沟通了视觉和语言的桥梁。
  VTransE的创新点有两处:1.避免了对object pair遍历进行复杂计算的情况,只需要计算每个object在relation space的特征向量,然后便可以用减法得到它们之间的relation,大大减小了计算复杂度

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值