VTransE(CVPR 2017)
文章
Paper自称VtranE是第一个采用full-conv的end-to-end的relation detection架构,是同时进行object detection和relation detection的。VTransE将object特征转换到一个低维的relation空间,在这个空间里,relation可以被建模成简单的转换向量(translation vector),比如:
直观地表示就如下图:
注意这里的predicate(谓语)可以是verb,spatial(如above),preposition(如with),comparative(如taller)。可以说visual relation是沟通了视觉和语言的桥梁。
VTransE的创新点有两处:1.避免了对object pair遍历进行复杂计算的情况,只需要计算每个object在relation space的特征向量,然后便可以用减法得到它们之间的relation,大大减小了计算复杂度