论文阅读:Gradient Harmonized Single-stage Detector

本文深入探讨了一篇针对one-stage目标检测器不平衡问题的论文,提出Gradient Harmonizing Mechanism。该方法结合Focal Loss的思想,不仅减少简单样本的影响,还对过于困难的样本(大梯度范数)进行抑制。通过gradient density概念,实现不同难度样本对模型训练影响的均衡。实验表明,这种方法在提高检测精度的同时,减少了训练时间,优于Focal Loss。
摘要由CSDN通过智能技术生成

Gradient Harmonizing Mechanism (AAAI 2019)

文章
  Focal Loss之后又一篇针对one-stage detector中的imbalance问题发起挑战的论文。文章中方法与Focal Loss相同的地方在于会减小简单样本对于模型的梯度影响,但也有两个地方与Focal Loss不一样:1.针对过于困难的样本(即本文所说的gradient norm过大),该方法认为其实是outlier,也要减小梯度对模型的影响;2.不局限与对cross entropy的改进,还扩展到了regression部分的loss。



  从上图可以看到,当模型converged时,很多样本的梯度是接近0(简单)的,也有挺多的样本梯度还比较大(困难),由于CE不对简单样本的梯度做抑制,所以由于简单样本的数量巨大,导致最后简单样本的grad norm之和会很大,主导了模型的训练,但这对模型其实并没有太大意义。Focal Loss则主动减小了简单样本的梯度,从而使模型更注重其它样本的训练,从而提升了性能。而本文的方法就是,希望每种难度的样本影响都能比较均衡,具体方法如下。
  对

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值