论文阅读:Deformable ConvNets v2: More Deformable, Better Results

DCN v2通过增加可变形卷积层数、引入可调节的变形模块和R-CNN特征模仿,提高了目标检测和分割任务的性能。论文分析了普通卷积的有效感受野、采样位置和显著性区域,指出可变形卷积能更好地适应几何变化。实验表明,DCN v2在COCO数据集上的目标检测效果优于DCN v1。
摘要由CSDN通过智能技术生成

DCN v2

文章
github上几个DCN v2的实现:pytorch实现1pytorch2实现caffe实现

  脑洞大开的可变形卷积竟然出V2了,之前一直忙着别的事情,今天终于可以抽出时间好好研读一下这篇新作了。首先大概回顾一下最初的可变形卷积网络的思想,普通的卷积计算,每次都只是待计算的像素点和其四周的卷积核大小的矩阵范围内的其它像素点参加计算,于是不管网络有多深,感受野始终是矩形的,然而现实中很多物体的形状都是可以变化的,如果卷积操作能对这种几何变化性有较好的适应性的话,在许多视觉任务上就能取得更好的效果。基于这个想法,可变形卷积网络最核心的地方就是在卷积操作时,给卷积核的每个采样点的位置加一个偏移(但是这个偏移是用普通的卷积得到的)。此外可变形卷积网络还针对detection和segmentation任务设计了deformable RoIpooling,给每个bin都加了一个偏移,这也启发了后来MSRA的一篇叫Learning Region Feature for Object Detection的文章。

Deformable Convents V2是一种卷积神经网络的改进版本,它在处理图像时具有更强的形变能力,从而取得更好的结果。 在传统的卷积神经网络中,卷积操作是采用固定大小的卷积核在图像上滑动并提取特征。然而,这种固定大小的卷积核可能无法充分捕捉到图像中的各种形状和纹理信息。而Deformable Convents V2通过引入可变形卷积核的概念,允许卷积核在滑动时进行形状的微小调整,以更好地适应各种形状的目标。 具体来说,Deformable Convents V2通过引入两个新的模块来实现形变操作,即可变形卷积模块和可变形池化模块。可变形卷积模块可以根据不同的图像内容自适应地调整卷积核的形状和位置,从而更好地捕捉到目标的细节和形状信息。而可变形池化模块则可以在池化操作中采用可变形采样方式,使得特征图具有更好的平移、旋转和尺度不变性。 通过使用Deformable Convents V2,可以让卷积神经网络在处理图像时具有更强的形变检测能力,从而在目标检测、图像分割等任务中取得更好的结果。例如,在目标检测任务中,Deformable Convents V2可以更准确地定位和识别各种形状和姿态的目标,提高检测的精度和鲁棒性。 总之,Deformable Convents V2通过增强神经网络的形变能力,在图像处理任务中取得更好的结果。它的引入使得卷积神经网络更具针对性和适应性,从而推动了计算机视觉领域的发展。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值