论文阅读:Deformable ConvNets v2: More Deformable, Better Results

DCN v2通过增加可变形卷积层数、引入可调节的变形模块和R-CNN特征模仿,提高了目标检测和分割任务的性能。论文分析了普通卷积的有效感受野、采样位置和显著性区域,指出可变形卷积能更好地适应几何变化。实验表明,DCN v2在COCO数据集上的目标检测效果优于DCN v1。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DCN v2

文章
github上几个DCN v2的实现:pytorch实现1pytorch2实现caffe实现

  脑洞大开的可变形卷积竟然出V2了,之前一直忙着别的事情,今天终于可以抽出时间好好研读一下这篇新作了。首先大概回顾一下最初的可变形卷积网络的思想,普通的卷积计算,每次都只是待计算的像素点和其四周的卷积核大小的矩阵范围内的其它像素点参加计算,于是不管网络有多深,感受野始终是矩形的,然而现实中很多物体的形状都是可以变化的,如果卷积操作能对这种几何变化性有较好的适应性的话,在许多视觉任务上就能取得更好的效果。基于这个想法,可变形卷积网络最核心的地方就是在卷积操作时,给卷积核的每个采样点的位置加一个偏移(但是这个偏移是用普通的卷积得到的)。此外可变形卷积网络还针对detection和segmentation任务设计了deformable RoIpooling,给每个bin都加了一个偏移,这也启发了后来MSRA的一篇叫Learning Region Feature for Object Detection的文章。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值