DCN v2
文章
github上几个DCN v2的实现:pytorch实现1,pytorch2实现,caffe实现
脑洞大开的可变形卷积竟然出V2了,之前一直忙着别的事情,今天终于可以抽出时间好好研读一下这篇新作了。首先大概回顾一下最初的可变形卷积网络的思想,普通的卷积计算,每次都只是待计算的像素点和其四周的卷积核大小的矩阵范围内的其它像素点参加计算,于是不管网络有多深,感受野始终是矩形的,然而现实中很多物体的形状都是可以变化的,如果卷积操作能对这种几何变化性有较好的适应性的话,在许多视觉任务上就能取得更好的效果。基于这个想法,可变形卷积网络最核心的地方就是在卷积操作时,给卷积核的每个采样点的位置加一个偏移(但是这个偏移是用普通的卷积得到的)。此外可变形卷积网络还针对detection和segmentation任务设计了deformable RoIpooling,给每个bin都加了一个偏移,这也启发了后来MSRA的一篇叫Learning Region Feature for Object Detection的文章。