论文阅读:A2-Nets: Double Attention Networks

A2-Nets是一种利用双重注意力机制的深度学习模型,通过二次注意力池化收集全局特征,并分配给每个位置,增强卷积网络的表示能力。这种方法在减少层数的同时,仍能实现大感受野的效果,适用于资源有限的网络结构。
摘要由CSDN通过智能技术生成

A2-Nets: Double Attention Networks(NIPS 2018)

文章
  论文的名字很好,反映了本文的核心想法:首先使用second-order attention pooling将整幅图的所有关键的特征搜集到了一个集合里,然后用另一种attention机制将这些特征分别图像的每个location。
在这里插入图片描述
从上图看到,模型先会计算出一堆global descriptors,然后每个位置会根据自己本身的特征来计算对每个global descriptor的权重,从而能对自己的特征是一个补充,比如图上的红框处是一个baseball,所以它对baseball的权重就小,对其他的权重就大一些。然后又从上图(b)中又可以看出,得到了第二步的所有位置的attention vectors之后,组成的矩阵与global descriptors相乘便恢复到最开始的大小,其实输入输出就很卷积很像。写成数学形式就是下面这样,其中i代表location:
在这里插入图片描述
  首先来看看第一步,Feature Gathering。这步中使用了Bilinear CNN࿰

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值