Learning Robust General Radio Signal Detection using Computer Vision Methods阅读2017

        无线电信号的检测和定位是临近用户的检测和互相操作、干扰源的检测和分离、重要频谱事件标记或者识别频谱空缺的基础,本文使用用边界框回归的基于时频谱的CNN实现无线电信号的检测与定位,应用YOLO的变体,使用被标记的宽带频谱和边界框训练高效的信号检测器。

技术方法:

        信号检测和定位类似于视觉目标识别的问题,这里有很多技术被使用,如Fater RCNN,性能极好,对图片采用预测边界框、标签和目标可能性的方法,采用迭代元素,对不同区域的多个目标运行多个网络前馈传递去调整边界框预测,但是计算复杂度很高,分类速度有所降低。所以YOLO和SSH变成最可用的方法,本文采用修正的YOLO模型,性能高于SSD。

a:Tiny-Yolo 网络结构

        网络更小(相对视觉物体识别,频谱识别更简单,所以网络可以更小,且小网络可以减小由于当前的较小的数据集产生的过拟合,以及前馈传递的计算复杂度)。使消耗功率更低,更快。

        使用原始的时、频域的功率谱作为输入,通过一系列有越来越多过滤器的窄的卷积层产生网格检测输出。输出的每一个网格包括对相对高度宽度的回归目标,类的可能性,允许网络同时检测单个频谱图中的许多发射。(Anchor boxes 也可能可以用来提高性能,但是我们目前没有包含他)。有很多设计参数本任务没有充分优化,可能值得进一步思考。

b:训练和评估数据集

        我们使用有边界框标记的时频谱的宽带信号数据作为输入,使用GNU RADIO模拟,数据集在DARPA比赛上,还未开源。

损失函数:

         使用Adam stochastic gradient descent optimizer。

性能分析:

        使用20000谱图训练,每个包含至少一个事件,64batch_size,训练40000迭代。

-

         结果显示网络能够精确的检测定位谱事件,水平带(宽带失真、干扰)不被识别,(原始的基于能量检测的可能会错误将其分类)。因为输出是概率回归,所以可以使用传统的CFAR技术调整虚警率和基于门限的检测概率。

结论:

        我们已经研究了使用生成的数据可以在复杂的动态宽带环境中生成强健的预测边界框检测,遗留的工作是去量化检测敏感度,评估与基线方法的对比性能和标记的无线数据的性能对比。

        我们对标记的真实ISM带数据训练,评估如图,性能良好。

.        这个例子说明了许多非常吸引人的特性,例如在干扰下检测的弹性、描绘非常接近的信号的能力,以及检测具有困难损伤的完整信号,例如严重衰落的频率子带

        有许多额外的优化和训练策略可以帮助提高此类系统的性能,但由于我们仍在 DeepSig 努力完善这种方法,因此我们将对这些参数进行深入探索以供未来工作。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值