技术方案选型:
风控场景优化实践
1 热点数据预加载
// 定时加载高频用户数据到Redis
@Scheduled(cron = "0 0/5 * * * ?")
public void preloadHotUsers() {
List<String> hotUsers = riskStatRepo.findHotUsers(Instant.now().minus(1, HOURS));
hotUsers.forEach(userId -> {
String key = "risk_profile:" + userId;
if (!redisTemplate.hasKey(key)) {
UserProfile profile = profileService.buildProfile(userId);
redisTemplate.opsForValue().set(key, serialize(profile), 10, MINUTES);
}
});
}
2 动态过期策略
// 根据风控等级调整TTL
public class RiskTTLCalculator {
public int calculate(RiskLevel level) {
switch (level) {
case HIGH: return 3600 * 24; // 高风险记录保留24小时
case MEDIUM: return 3600 * 6; // 中风险6小时
default: return 3600; // 低风险1小时
}
}
}
// 在切面中动态设置
redisTemplate.expire(
key,
ttlCalculator.calculate(riskLevel),
TimeUnit.SECONDS
);
总结:风控场景选型指南
-
实时反欺诈检测:优先Redis方案(响应延迟<10ms)
- 使用布隆过滤器预处理海量请求
BloomFilter<CharSequence> filter = BloomFilter.create( Funnels.stringFunnel(UTF_8), 1000000, 0.001 );
-
授信审批流程:必须使用幂等表方案
- 配合数据库行锁保证资金操作安全
SELECT * FROM credit_apply WHERE apply_id = ? FOR UPDATE
-
离线特征计算:采用混合方案
- Redis记录计算状态 + 数据库存储版本结果
-
监管报送场景:强化幂等表设计
- 添加操作日志审计字段
ALTER TABLE idempotent_record ADD audit_log JSON COMMENT '操作轨迹';
最终架构决策树: