材料力学——弯曲内力、弯曲应力

本文详细探讨了弯曲内力的概念,包括剪力和弯矩的方程、绘制剪力图和弯矩图的方法。同时阐述了纯弯曲与剪切弯曲的区别,并介绍了几何方程、本构方程和平衡方程在弯曲问题中的应用。此外,还涉及了弯曲应力的计算,特别是正应力和切应力的产生。最后,提到了弯曲变形章节中忽略剪力对变形影响的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

弯曲内力

弯曲内力:受弯杆件横截面上的内力

由给定的梁与外力,列出梁的剪力方程、弯矩方程,绘制剪力图、弯矩图
剪力方程:Fs = Fs(x)
弯矩方程:M = M(x)

\frac{d^2M}{dx^2} = \frac{dFs}{dx} = q
载荷集度q(x)

弯曲应力

纯弯曲及弯曲正应力

剪切弯曲:梁上既有弯矩也有剪力,此时横截面有正应力、切应力
纯弯曲:梁上只有弯矩,此时横截面只有正应力

讨论几何方程、本构方程、平衡方程。
几何方程:
纯弯曲后,中性层的曲率为ρ,与中性层距离y的纵向纤维的应变为ε
\varepsilon = \frac{y}{\rho}
本构方程:\sigma = E \varepsilon
平衡方程:内力矩与外力矩M平衡,内力矩由正应力积分而成。
\int y \sigma dA = M

将几何方程、本构方程带入平衡方程得:
\frac{E}{\rho} \int y^2dA = M = \frac{E}{\rho} I_z

正应力与外力矩的方程:
\sigma = \frac{My}{I_z}

弯曲切应力

先说几个概念

横截面:蓝色,中性轴:横截面与中性层的交线,中性层:紫色,纵向对称面:红色


这是截取了梁的一段,长为dx,讨论剪应力与剪力的关系时,通过绿色的体 前面与后面的轴向力关系,得到剪应力与剪力的关系。
前面与后面相距dx,两个面上都有正应力,积分得到两个面上的轴向力,前面FN1,后面FN2,FN1-FN2 = dF's

补充:

共三章,弯曲内力、弯曲应力、弯曲变形。分别是已知梁、外力,求内力、求应力、求挠度。
分别建立关系:
外力:剪力、弯矩——内力
外力:剪力——剪应力
外力:弯矩——正应力
外力:弯矩——挠度
弯曲变形一章忽略了剪力对变形的影响。(跨度远大于截面高度的梁可忽略)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值