知识图谱综述(一)

知识图谱综述(一)

论文《Knowledge Graphs》原文链接

前言

论文《Knowledge Graphs》誉为最全、最好的知识图谱(KG)综述论文。这个系列的博客带你一览该论文的所有内容。

目录和摘要

  1. 摘要(1):本文介绍工业学术界的KG场景,这些场景需要利用多元化动态大规模的数据。之后,介绍并对比了用于KG的各种基于图数据的模型(用以表示KG)和查询语言。之后,介绍了KG中的模式(方案)标识上下文。之后,解释了如何使用演绎和归纳技术表示知识和提取知识。然后,总结了KG的创建丰富质量评估改进出版方法。然后,概述了著名的开源KG企业KG它们的应用,以及它们如何使用前文介绍的技术。最后高度总结了KG未来的研究方向
  2. 关键词:信息系统(基于图的数据库模型)、信息整合KG
  3. 引言(1):相关工作、KG的概念、KG的应用、本文使用的例子(智利的旅游业)、KG综述文献对比、本文结构
  4. 数据图(4)
    • 图结构数据模型的介绍:有向边标签图(多关系图)、异构体、属性图、图数据集、其他图数据模型、图存储;
    • 查询(语言):图模式、复杂的图模式、导航图模式、其他特性。
  5. 模式、标识符、上下文(12)
    • 模式:语义模式、验证模式、紧急模式(图摘要);
    • 标识符:持久标识符、外部标识符链接、数据类型、词汇化、已存在节点;
    • 上下文:直接表示、具体化、更高层级的表示、注释、其他上下文框架。
  6. 知识演绎(23)
    • 本体:解释、个体、属性、类别、其它特征;
    • 语义和蕴涵:模型论语义、蕴涵、If–then 和 if-and-only-if 的语义区别;
    • 推理:规则、描述逻辑。
  7. 知识归纳(23)
    • 图谱分析:技术(中心社区检测连通性节点相似度寻找路径)、框架、数据图分析、查询的分析、蕴涵分析;
    • KG嵌入:转移模型、张量分解模型、语言模型、蕴涵感知模型;
    • 图神经网络GNN:递归GNN、卷积GNN;
    • 符号学习:规则挖掘、公理挖掘。
  8. 创造与丰富(50)
    • 人类协作;
    • 文本数据源:预处理命名实体识别NER实体链接关系抽取联合任务
    • 标记语言数据源:基于包装器的提取、web表提取、深度网络爬取;
    • 结构化数据源:从表映射、从树映射、从其他KG映射;
    • 模式/本体创建:本体工程、本体学习。
  9. 质量评估(58)
    • 精确度:句法准确度、语义准确性、同步性(及时性);
    • 覆盖范围:完整性、代表性;
    • 相关性:一致性、有效性;
    • 简明:简洁性、具象简洁、可理解性;
    • 其他质量维度。
  10. 细化(61)
    • 补全:一般链接预测、类型链接预测、标识符链接预测;
    • 纠正:事实验证、不一致性修复;
    • 其他细化的任务。
  11. 出版(65)
    • 最佳实践:FAIR原则(可检索性、易得性、互操作性、可重用性)、关联数据原则;
    • 访问协议:dump格式、节点查找、边模式、(复杂的)图模式、其他协议;
    • 使用控制:授权、使用规则、加密、匿名化。
  12. KG的实际应用(73)
    • 公开KG:DBpedia、YAGO、Freebase、Wikidata、其他公开的跨领域KG、特定领域的公开KG;
    • 企业KG:web检索、贸易、社交网络、金融、其他行业。
  13. 总结和结论、未来的方向、致谢(77)
  14. 参考文献(79)
  15. 附录A:背景(108)
    • KG历史背景
    • 2012年前的KG
    • 2012年后的KG
  16. 附录B:形式化定义(114)
    • 图数据模型:多关系图、异构图、属性图、图数据集;
    • 查询:图模式、复杂图模式;
    • 模式:语义模式、验证模式、紧急模式;
    • 上下文:注释域;
    • 知识演绎:图解释、规则、描述逻辑;
    • 知识归纳:图并行框架、KG嵌入、GNN、符号学习。

后续将继续介绍本论文的第一部分——引言。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 知识图谱(Knowledge Graph)是一种用于表示和存储大规模结构化和半结构化数据的图形数据库。它将实体、关系和属性组织在一张图中,并通过丰富的语义关系连接起来。知识图谱的构建和使用已经在各个领域中得到了广泛的应用。 2019年的ICDM(International Conference on Data Mining)上,关于知识图谱的研究和应用有许多重要的进展和综述。这些综述主要涉及以下几个方面: 1. 知识图谱构建方法:综述中介绍了多种知识图谱构建方法,包括基于文本挖掘的方法、基于结构化数据的方法和基于众包的方法等。这些方法能够从不同的数据源中提取实体、关系和属性,并将其组织成一个完整的知识图谱。 2. 知识图谱表示学习:综述中介绍了知识图谱表示学习的方法,包括传统的基于矩阵分解的方法和最新的基于深度学习的方法。这些方法能够将知识图谱中的实体和关系映射到低维向量空间中,以便进行后续的数据分析和推理。 3. 知识图谱应用:综述还介绍了知识图谱在不同领域中的应用,例如自然语言处理、推荐系统和智能问答等。这些应用能够从知识图谱中获取更丰富的信息,并对用户的需求进行更准确的响应。 总的来说,知识图谱综述2019 ICDM反映了知识图谱领域的最新研究和发展趋势。通过了解和应用这些研究成果,我们可以更好地利用知识图谱来解决实际问题,推动人工智能和大数据的发展。 ### 回答2: 知识图谱是一个用于表示和组织大规模信息的结构化知识库,它以图的形式将实体、关系和属性表示为节点和边。它的目标是提供一个计算机可理解的知识表达形式,以帮助机器理解和推理人类知识。近年来,知识图谱在信息检索、问答系统、社交网络分析等领域取得了显著的进展。 2019年icdm(IEEE International Conference on Data Mining)上,对知识图谱的研究进行了广泛综述。研究者们关注了知识图谱的构建、表示学习、推理和应用等方面。 首先,研究者们讨论了知识图谱的构建方法。这包括自动从结构化和非结构化数据中抽取实体、关系和属性,以及采用人工注释和知识编辑的方式进行构建。还有一些研究致力于解决构建中的挑战,如噪声数据处理、实体消歧和关系抽取等。 其次,关于知识图谱表示学习的研究也被广泛涵盖。这些方法旨在将知识图谱中的实体和关系映射到低维向量空间,从而捕捉它们之间的语义关系。一些流行的方法包括基于图卷积网络(Graph Convolutional Networks, GCN)和深度生成模型(Deep Generative Models)的表示学习方法。 此外,知识图谱的推理方法也是icdm研讨的重点。推理可以通过图匹配、规则推理和基于规则的推理等方式来实现。这些方法可以帮助发现实体之间的隐藏关联和新的知识。 最后,icdm还关注了知识图谱在各种应用领域的应用。这包括推荐系统、信息检索、问答系统、社交网络分析等。研究者们探索了如何使用知识图谱的结构化表示来提高这些领域中的性能。 综上所述,2019 icdm对知识图谱的研究进行了广泛综述,涵盖了从构建到推理的各个方面,并展示了知识图谱在不同应用领域的潜力和前景。 ### 回答3: 知识图谱是一种能够存储和表示知识的图形化数据结构,它通过将知识组织成实体、属性和关系的形式来描述现实世界中的事物和概念。而2019年的ICDM(International Conference on Data Mining)会议就是在这一领域进行的重要学术会议之一。 2019年ICDM知识图谱方向的研究主题包括但不限于知识图谱的构建、表示和推理。首先,研究人员关注如何有效地构建大规模的知识图谱。这涉及到对知识源的挖掘和知识抽取技术的应用,以从不同的元数据中自动提取和整合实体、属性和关系。 其次,关于知识图谱的表示方法是研究的重点。学者们致力于寻找有效的表示方法,以将知识图谱映射到低维空间中,从而能够更好地支持各类图谱相关的任务,如检索、推荐和分类等。此外,还有一些学者关注于如何利用深度学习和图神经网络等高级模型来提升知识图谱的表示能力。 最后,推理技术在知识图谱中也起到重要作用。知识图谱推理能够通过检测图谱中的潜在推理规则和模式,从中获得新的知识。这项研究的目标是能够自动发现和推理出更多的隐藏知识,从而拓展和完善知识图谱的内容。 综上所述,2019年ICDM会议以知识图谱为主题,聚焦于知识图谱的构建、表示和推理等方面的研究。这些研究对于促进知识图谱的发展和应用具有重要意义,将为相关领域的学术研究和实践应用提供新的思路和方法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值