论文阅读——STD-Net:Retinal Image Segmentation with a Structure-Texture Demixing Network

STD-Net:Retinal Image Segmentation with a Structure-Texture Demixing Network
使用结构-纹理分解网络用于视网膜图像分割

From MICCAI2020

Abstract

视网膜图像分割对于疾病的自动诊断十分重要,但由于视网膜图像混合了复杂的结构和纹理特征使得这一任务十分具有挑战性。目前一些联合调控纹理和结构的方法不可避免会引入一些偏见从而导致较差的分割性能。


为了解决这一问题,本文提出了一种分开寻找结构和纹理内容的分割策略,从而提升分割精度。最终本文设计了一款结构-纹理分解网络(STD-Net)可以分开处理纹理和结构并且处理效果更好。


随后这一方法在视网膜血管分割和视盘视杯分割任务中进行了广泛的实验,充分验证了这一方法的有效性。

Section I Introduction

视网膜图像分割在疾病自动诊断中十分重要,因为它与糖尿病视网膜病变等诸多严重疾病有关;而视盘和视杯分割计算的杯盘比则是判断青光眼的主要指标。但是由于视网膜图像复杂的纹理和结构信息使得视网膜图像分割比自然图像分割更加困难。
最近深度神经网络在图像分割任务中大放异彩,但是这些算法不可避免在调控细节纹理会和全局结构时有所偏向,更加偏向于纹理的识别,结果就是一些纹理十分相似的微小结构往往就会被误分类。




因此将视网膜图像中的纹理和结构信息分开处理是十分有必要的。在图像处理中结构-纹理分解是十分重要的一种操作,广泛用于各种计算机视觉任务,如图像增强、光流法和图像风格化任务中。但是将其应用于视网膜图像分割中仍有待研究。




已有的纹理-结构分解法不足以识别边缘结构,因为他们可能有相似的数据分布特征,而纹理部分不可避免会包含结构信息,因此如果不能充分提取到结构信息,只能产生较差的分割结果。





本文提出一种结构-纹理分解网络(Structure-Texture Demixing Network,STD-Net),将图像分为结构部分和纹理部分,使用不同的网络结构分别处理。





因为结构部分主要包含平滑的信息,而纹理部分更多包含高频信息,因此结构部分适合使用具有表征能力的网络,纹理部分适合使用层次较浅的网络,否则容易过拟合。
本文的结构在两类任务中进行了测试,分别是DRIVE数据集上的视网膜血管分割,以及在ORIGA和REFUGE数据集上的视盘视杯分割,均验证了这一方法的有效性。






本文的主要贡献总结如下:







(1)提出一种新的分割策略,将图像的结构信息和纹理信息分开处理用以提升分割精度;







(2)设计一个STD-Net使用不同的网络分别处理纹理和结构部分;







(3)开两类任务中开展广泛的额实验验证这一方法的有效性。

Section II Methodology

在这里插入图片描述

Fig 1描绘了STD-Net的具体结构,
一般结构部分对应分割的主体,是比较平滑的部分,而纹理部分则包含细粒度的信息,几乎都是一些周期新的纹理或者噪声。
因此分割主体的主要信息都包含在结构部分,细节信息包含在纹理部分。







因此STD-Net以M-Met为骨干网络,将输入图像分成结构和纹理两部分,引入一个纹理模块来处理纹理信息,其中结构部分作为M-Net的输入,结构部分则用使用纹理模块提取纹理信息恢复边界结构,蓝色符号表示减操作。Lt,Ls,Lseg分别代表纹理损失、结构损失和分割损失函数。







Part A Structure-Texture Demixing Loss Function







图像被分为纹理和结构两部分,因此损失函数也分为纹理损失和结构损失,基于图像结构和纹理的统计信息分别对结构和纹理进行惩罚。








比如对输入图像I,经过STD网络会将I分解为S+T两部分,分解后的问题就变成了优化:
在这里插入图片描述

Ls和Lt分别代表结构损失和纹理损失。









在结构部分Ls<<Lt,而在纹理部分应该是Ls>>Lt,而lambda作为一个权重因子。










Total Variation:











结构损失函数的TV表示为:










在这里插入图片描述

相当于每一处结构损失的绝对值平方和。












而纹理损失的TV形式是:











在这里插入图片描述

是每一点纹理损失扥绝对值。













而损失函数依旧使用传统的交叉熵损失函授,因此总体损失函数表述为:

在这里插入图片描述

mu和lambda分别表示各自的权重。
Part B Structure-Texture Demixing Nodule
再来回顾一下Fig1中STD-Net的结构,首先使用STD获取纹理部分,其次根据输入图像的纹理部分获得图像的结构部分,
从而保证I=S+T。
在这里插入图片描述

而STD包含10层卷积层+LeakyReLU来提取纹理特征,随后作为Texture block的输入。


Texture Block:



Texture Block是STD的一部分,主要是因为一些结构,特别是边界结构,有可能被误分类为纹理构成部分从而受到纹理损失的类似乘惩罚。尽管这些纹理部分中的结构信息对分割十分重要,但是纹理和过多的噪音会影响分割精度。
为了解决这一问题,就设计了Texture Block来提取边界信息,减少纹理和噪声的影响。
在这里插入图片描述

考虑到纹理部分包含的有限的信息以及深层模型可能会导致过拟合,因此Feature Block使用很浅的层次。Fig2则展示了纹理模块的内部结构,可以看到只包含2层卷积和一层自适应归一化层和LeakyReLU,主要用于修复分解错误的结构,减少纹理信息的影响。


Fig 3展示了分解后的结构、纹理和经Texture Block处理后得到的E-structure。
为了可视化效果更好,只展示了绿色通道。
可以看到提取的结构图中(b)既包含平滑的结构也包含纹理信息。
通过a,b相比可以看到使用纹理损失分解后的结构图保留了主要结构同时滤除了高频噪声,主要是边界结构和高频纹理的混合。
而c和d相比 可以看到texture block有效的提取出了结构部分,率除了高频纹理信息。


在这里插入图片描述

Section III Experiments

本文进行了两类实验:视网膜血管分割和视盘视杯分割。

Part A Vessel Segmentation on DRIVE

DRIVE数据集的情况在此不再赘述,实验中将图像resize到 512x512.

使用的评价指标有Spe,Sen,Acc,IoU,AUC,ROC.


在这一试验中与目前一些SOTA的框架进行了对比,分别是:Li [21], Liskowski [22], MS-NFN [23],U-Net [3], M-Net [14], and AG-Net [20].
对比结果展示在TableI中。

其中Li[21]将血管分割变成易了多模态的数据转换任务,从原始的视网膜图像转换至血管图,随后对所有像素点进行打标,而不是只对中心像素进行标注。

Kiskowski[22]则是在将样本送入网络训练前经过了对比度归一化以及一些对比度增强手段,比如gamma correction伽马变换等。

MS-NFN[23]通过‘up-pool’和‘pool-up’两个子模型产生多尺度的特征图。

UNet[3]则是通过编码结构来学习纹理特征,随后再借助解码网络产生精确地位置信息;

M-Net[14]则是引入了多尺度的输入和多尺度的输出来学习层次化的表征;

AG-Net[20]提出了对结构敏感的扩张路径,将其加入到M-Net中。
在这里插入图片描述
可以看到STD-Net比性能最好的M-Net都还要有提升,尤其是Sen指标,充分说明本文这种结构-纹理分解机制提升了模型的结构检测能力。
随后本文移除了texture block,Ls和Lt将基准模型称之为BL,BLST加入了Ls和Lt。
Fig 4展示了不同方法的对比效果。可以看到BL中就丢失了许多边缘结构,与纹理结构很类似,而BLST就很好的识别了这些微小的结构。在(g)中加入texture block后检测到了更多细节的边界结构。

在这里插入图片描述

Part B Optic Disc/Cup Segmentation on ORIGA


视盘视杯分割是视网膜图像分割另一重要任务。



本文基于的ORIGA数据集包含650张眼底图像,其中168例为青光眼,482为正常。
650张图像划分为train:val = 325:325,两类中分别包含73、95例青光眼病理。
实验仅裁剪了OD部分,并且resize到了256x256的大小。




Table 2展示了与其他SOTA算法的对比,可以看到依旧是本文取得了最佳的分割性能,只有OEdisx略高于AG-Net。
在REFUGE数据集上也取得了相近的结果。选用REFUGE数据集是因为它的图像来自于不同的采集仪器,因此可以测试模型的泛化性能,更能说明本文将结构和纹理分解的有效性。



在这里插入图片描述
Part C消融实验
为了验证本文这种结构-纹理分解机制以及tecture block的有效性,还进行了消融实验,各部分组合对比结果汇总在Table 3中。
还有一些有趣的发现:
当骨干网络BL加入Ls或Lt后对Sen有提升,尤其是加入结构损失后获得了最高的敏感性指标,说明检测到了更多的血管结构。其次
BL+Ls+Lt发现对Acc,AUC,IOU均有提升,充分说明了结构-纹理分解机制的有效性。
加上Texture block组成STD-Net后获得了最高得我ACC,AUC,IOU指标,进一步说明了texture block的有效性。
在这里插入图片描述

Section IV Conclusion

本文提出了一种可训练的结构-纹理分解网络(STD-Net),通过将输入分为结构和纹理两部分分别进行处理,这样分割模型可以更关注于结构信息,减少纹理信息的影响。
还提出了一个纹理模块来进一步从图像纹理部分中提取结构信息,进一步提升了分割效果。
在视网膜血管分割和视杯视盘分割上的实验均证明了本文这种分解机制的有效性。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值