yolov7-pytorch复现

本文介绍了如何在GitHub上使用yolov7PyTorch库进行深度学习项目,包括环境配置(如Anaconda和PyCharm)、训练VOC数据集(包括VOC07+12和自定义数据集)以及评估过程,重点讲解了训练参数调整和模型预测方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代码仓库:GitHub - bubbliiiing/yolov7-pytorch: 这是一个yolov7的库,可以用于训练自己的数据集。

论文链接:YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

一、所需环境

当然深度学习环境的搭建是基础,详情可见(win10):

【深度学习】windows10环境配置详细教程_anaconda3环境变量配置win10-CSDN博客

Unbutun搭建深度学习环境可以参考:

Ubuntu20.04配置pytorch深度学习环境(亲测有效)_ubuntu20.04 cuda 11.6 torch安装哪个版本-CSDN博客

PyCharm:2022.2.2版本

torch==1.2.0+

为了使用amp混合精度,推荐使用torch1.7.1以上的版本。

scipy==1.2.1

numpy==1.17.0

matplotlib==3.1.2

opencv_python==4.1.2.30

tqdm==4.60.0

Pillow==8.2.0

h5py==2.10.0

二、训练步骤

a、训练VOC07+12数据集

数据集的准备

本文使用VOC格式进行训练,训练前需要下载好VOC07+12的数据集,解压后放在根目录

VOC数据集下载地址如下,里面已经包括了训练集、测试集、验证集(与测试集一样),无需再次划分:

链接: https://pan.baidu.com/s/19Mw2u_df_nBzsC2lg20fQA

提取码: j5ge

数据集的处理

修改工程主目录中的voc_annotation.py里面的annotation_mode=2,运行voc_annotation.py生成根目录下的2007_train.txt和2007_val.txt。

开始网络训练

train.py的默认参数用于训练VOC数据集,直接运行train.py即可开始训练。

不出意外,接下来就一定有意外:

很明显,我的笔记本显卡不行哦,显卡内存太小,可以调整batch_size。

看到batch_size等于Freeeze_batch_size,将Freeze_batch_size=2

开始训练:

训练结果预测

训练结果预测需要用到两个文件,分别是yolo.py和predict.py。我们首先需要去yolo.py里面修改model_path以及classes_path,这两个参数必须要修改。

model_path指向训练好的权值文件,在logs文件夹里。

classes_path指向检测类别所对应的txt。

完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。

 

b、训练自己的数据集

数据集的准备

本文使用VOC格式进行训练,训练前需要自己制作好数据集,

训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。

训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。

数据集的处理

在完成数据集的摆放之后,我们需要利用voc_annotation.py获得训练用的2007_train.txt和2007_val.txt。

修改voc_annotation.py里面的参数。第一次训练可以仅修改classes_path,classes_path用于指向检测类别所对应的txt。

训练自己的数据集时,可以自己建立一个cls_classes.txt,里面写自己所需要区分的类别。

model_data/cls_classes.txt文件内容为:

修改voc_annotation.py中的classes_path,使其对应cls_classes.txt,并运行voc_annotation.py。

 三、预测

a、使用预训练权重

 

下载完库后解压,在百度网盘下载权值,放入model_data,运行predict.py,输入img/street.jpg

在predict.py里面进行设置也可以进行fps测试和video视频检测。

b、使用自己训练的权重

按照训练步骤训练。

在yolo.py文件里面,在如下部分修改model_path和classes_path使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类

更改位置如下:

接下来就是运行predict.py,输入预测的图片位置:img/street.jpg,或者:在predict.py里面进行设置可以进行fps测试和video视频检测。

四、评估步骤

a、评估VOC07+12的测试集

  1. 本文使用VOC格式进行评估。VOC07+12已经划分好了测试集,无需利用voc_annotation.py生成ImageSets文件夹下的txt。
  2. 在yolo.py里面修改model_path以及classes_path。model_path指向训练好的权值文件,在logs文件夹里。classes_path指向检测类别所对应的txt。
  3. 运行get_map.py即可获得评估结果,评估结果会保存在map_out文件夹中。

b、评估自己的数据集

  1. 本文使用VOC格式进行评估。
  2. 如果在训练前已经运行过voc_annotation.py文件,代码会自动将数据集划分成训练集、验证集和测试集。如果想要修改测试集的比例,可以修改voc_annotation.py文件下的trainval_percent。trainval_percent用于指定(训练集+验证集)与测试集的比例,默认情况下 (训练集+验证集):测试集 = 9:1。train_percent用于指定(训练集+验证集)中训练集与验证集的比例,默认情况下 训练集:验证集 = 9:1。
  3. 利用voc_annotation.py划分测试集后,前往get_map.py文件修改classes_path,classes_path用于指向检测类别所对应的txt,这个txt和训练时的txt一样。评估自己的数据集必须要修改。
  4. 在yolo.py里面修改model_path以及classes_path。model_path指向训练好的权值文件,在logs文件夹里。classes_path指向检测类别所对应的txt。
  5. 运行get_map.py即可获得评估结果,评估结果会保存在map_out文件夹中。
complex-yolov4-pytorch是一个基于PyTorch实现的复杂目标检测算法,其复现过程涉及到模型结构、参数设置以及训练测试流程等多个方面。 首先,复现complex-yolov4-pytorch需要详细了解论文中提出的模型结构和损失函数等细节,然后根据论文中的描述在PyTorch框架下构建模型,包括网络层的搭建、激活函数的选择等,并且要注意模型参数的初始化和正则化操作。 其次,对于训练数据的处理也是复现过程中的重要环节,需要根据论文中提供的数据集或自己的数据集进行预处理,包括数据增强、标签生成等操作,以及构建数据加载器并进行合适的数据分割。 接着,需要根据论文中给出的训练策略和超参数设置来实现模型的训练过程,包括学习率的调度、优化器的选择、损失函数的定义等,同时要注意在训练过程中记录和保存模型参数和训练日志。 最后,针对复现模型的性能进行评估和测试,可以使用论文中提出的评价指标来计算模型在测试集上的表现,并根据实际需求对模型进行调优和改进。 总之,复现complex-yolov4-pytorch是一个综合性的任务,需要对目标检测算法有深入的理解,并具备较高的PyTorch编程能力和实践经验。在复现过程中要注重细节,对比论文中的描述和代码实现进行验证,并根据实际情况进行适当的调整和优化,以获得更好的模型性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值