numpy下 4

今天忙,简单列一下,明天补

  1. np中的广播机制
    参考:https://www.runoob.com/numpy/numpy-broadcast.html广播的规则:让所有输入数组都向其中形状最长的数组看齐,形状中不足的部分都通过在前面加 1 补齐。输出数组的形状是输入数组形状的各个维度上的最大值。如果输入数组的某个维度和输出数组的对应维度的长度相同或者其长度为 1 时,这个数组能够用来计算,否则出错。当输入数组的某个维度的长度为 1 时,沿着此维度运算时都用此维度上的第一组值。**简单理解:**对两个数组,分别比较他们的每一个维度(若其中一个数组没有当前维度则忽略),满足:数组拥有相同形状。当前维度的值相等。当前维度的值有一个是 1。2. np.matmul和np.dot的区别np.matmul: Matrix product of two arrays.np.dot: alternative matrix product with different broadcasting rules.主要有两个地方不同:np.matmul不允许出现矩阵和标量相乘的情况广播规则不同:总体来说dot广播能力更强,matmul限制更多一点。dot规则:If a is an N-D array and b is an M-D array (where M>=2), it is a sum product over the last axis of a and the second-to-last axis of b:matmul规则: If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indexes and broadcast accordingly.第一个例子:dot和matmul都可以用:a = np.ones([9, 5, 7, 4])c = np.ones([9, 5, 4, 3])print(a.shape)print(c.shape)print(np.dot(a, c).shape)print(np.matmul(a, c).shape)输出:(9, 5, 7, 4)(9, 5, 4, 3) (9, 5, 7, 9, 5, 3) # doc(9, 5, 7, 3) # matmul这里doc规则是将a的最后一列找到,为4,然后在c中找到4在第三列,然后将其前面几维复制出来,得到最终结果(下面会再举几个例子)。这里matmul在遇见多维的时候,主要关注a的最后一维和c的倒数第二维,这样和普通的矩阵乘法类似。再来看几个dot可以使用,但matmul不可以使用的例子:a = np.arange(3456).reshape((3,4,5,6))b = np.arange(3456)[::-1].reshape((4,5,1,6,3))print(np.dot(a, b).shape)输出为:(3, 4, 5, 4, 5, 1, 3)类似的再来看几个例子(这几个例子matmul都无法使用,不满足广播规则):(3,4,5,6) (5,4,6,3)-> (3,4,5,5,4,3)(3,4,5,6) (4,5,6,3)-> (3,4,5,4,5,4)相信你有了一定的感觉,遇到矩阵乘法,尽量还是用matmul,因为dot的广播要求太松,虽然可以得到结果,但是很容易和我们预期出现差异。3. 奇异值分解linalg这个模块中包含了线性代数很多函数A = np.random.randint(0, 100, size=12).reshape(3, 4)u, s, v = np.linalg.svd(A, full_matrices=False)print(“A”, A)print(“u”, u)print(“s”, s)print(“v”, v)print(“A shape”, A.shape)print(“u shape”, u.shape)print(“s shape”, s.shape)print(“v shape”, v.shape)print(np.matmul(np.matmul(u,np.diag(s)),v))测试结果:A [[ 8 24 55 80] [ 3 89 99 17] [48 84 35 49]]u [[-0.45473138 -0.73517602 -0.50272815] [-0.68462754 0.64957664 -0.33065892] [-0.56965297 -0.19382055 0.79870463]]s [184.09535094 65.7078928 53.50116434]v [[-0.17944547 -0.65018618 -0.61232511 -0.41245025] [-0.20143797 0.36353579 0.26008576 -0.87156174] [ 0.62286533 0.4784395 -0.60616659 -0.12528561]]A shape (3, 4)u shape (3, 3)s shape (3,)v shape (3, 4)[[ 8. 24. 55. 80.] [ 3. 89. 99. 17.] [48. 84. 35. 49.]]4. QR分解QR(正交三角)分解法是求一般矩阵全部特征值的最有效并广泛应用的方法,一般矩阵先经过正交相似变化成为Hessenberg矩阵,然后再应用QR方法求特征值和特征向量。它是将矩阵分解成一个正规正交矩阵Q与上三角形矩阵R,所以称为QR分解法,与此正规正交矩阵的通用符号Q有关。如果实(复)非奇异矩阵A能够化成正交(酉)矩阵Q与实(复)非奇异上三角矩阵R的乘积,即A=QR,则称其为A的QR分解。ps: 奇异矩阵代表矩阵的秩不是满秩,非奇异矩阵代表满秩矩阵。奇异矩阵AX=0有无穷解,AX=b有五穷街或者无解。非奇异矩阵Ax=0只有唯一0解,AX=b有唯一解。测试:A = np.array([[2, -2, 3], [1, 1, 1], [1, 3, -1]])print(A)# [[ 2 -2 3]# [ 1 1 1]# [ 1 3 -1]]q, r = np.linalg.qr(A)print(q.shape)print(q)print(r.shape)print®print(np.dot(q, r))a = np.allclose(np.dot(q.T, q), np.eye(3))print(a)结果:[[ 2 -2 3] [ 1 1 1] [ 1 3 -1]](3, 3)[[-0.81649658 0.53452248 0.21821789] [-0.40824829 -0.26726124 -0.87287156] [-0.40824829 -0.80178373 0.43643578]](3, 3)[[-2.44948974 0. -2.44948974] [ 0. -3.74165739 2.13808994] [ 0. 0. -0.65465367]][[ 2. -2. 3.] [ 1. 1. 1.] [ 1. 3. -1.]]True5. Cholesky 分解Cholesky 分解是把一个对称正定的矩阵表示成一个下三角矩阵L和其转置的乘积的分解。它要求矩阵的所有特征值必须大于零,故分解的下三角的对角元也是大于零的。Cholesky分解法又称平方根法,是当A为实对称正定矩阵时,LU三角分解法的变形。测试:A = np.array([[1, 1, 1, 1], [1, 3, 3, 3], [1, 3, 5, 5], [1, 3, 5, 7]])print(np.linalg.eigvals(A)) # 特征值全部非0L = np.linalg.cholesky(A)print(L.shape)print(np.dot(L,L.T))结果:[13.13707118 1.6199144 0.51978306 0.72323135](4, 4)[[1. 1. 1. 1.] [1. 3. 3. 3.] [1. 3. 5. 5.] [1. 3. 5. 7.]]6. 线代中几个性质6.1 范数numpy.linalg.norm(x, ord=None, axis=None, keepdims=False) 计算向量或者矩阵的范数。测试:import numpy as npx = np.array([1, 2, 3, 4])print(np.linalg.norm(x, ord=1)) # 10.0print(np.sum(np.abs(x))) # 10print(np.linalg.norm(x, ord=2)) # 5.477225575051661print(np.sum(np.abs(x) ** 2) ** 0.5) # 5.477225575051661print(np.linalg.norm(x, ord=-np.inf)) # 1.0print(np.min(np.abs(x))) # 1print(np.linalg.norm(x, ord=np.inf)) # 4.0print(np.max(np.abs(x))) # 4A = np.array([[1, 2, 3, 4], [2, 3, 5, 8], [1, 3, 5, 7], [3, 4, 7, 11]])print(A)# [[ 1 2 3 4]# [ 2 3 5 8]# [ 1 3 5 7]# [ 3 4 7 11]]print(np.linalg.norm(A, ord=1)) # 30.0print(np.max(np.sum(A, axis=0))) # 30print(np.linalg.norm(A, ord=2)) # 20.24345358700576print(np.max(np.linalg.svd(A, compute_uv=False))) # 20.24345358700576print(np.linalg.norm(A, ord=np.inf)) # 25.0print(np.max(np.sum(A, axis=1))) # 25print(np.linalg.norm(A, ord=‘fro’)) # 20.273134932713294print(np.sqrt(np.trace(np.dot(A.T, A)))) # 20.2731349327132946.2 行列式import numpy as npx = np.array([[1, 2], [3, 4]])print(x)# [[1 2]# [3 4]]print(np.linalg.det(x))6.3 秩import numpy as npI = np.eye(3) # 先创建一个单位阵print(I)# [[1. 0. 0.]# [0. 1. 0.]# [0. 0. 1.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值