数值计算笔记之数值积分(一)

本文详细介绍了数值积分的概念、方法及其应用。内容包括积分思想,如中矩形、梯形和辛普森公式,讨论了求积公式的余项和代数精度,介绍了牛顿-柯特斯公式和复化求积法,特别是复化梯形和辛普森公式。此外,还提供了C++和MATLAB的代码实现示例。
摘要由CSDN通过智能技术生成

目录

0、引言

一、数值积分的积分思想

1、中矩形公式

2、梯形公式

3、辛普森公式

二、求积公式的余项和代数精度

三、插值型求积公式

四、牛顿--柯特斯公式 (N-C公式)

五、复化求积法

1、复化梯形公式

2、复化辛普森公式 (要求 n 为偶数)

六、代码实现


0、引言

在高数中,可以根据 \int_{a}^{b}f(x)dx = F(b)-F(a),求得积分。但是如果f(x)存在以下两种情况:

  1. f(x)是离散函数
  2. 无法求得原函数F(x)

那么对于这种情况,就可以利用数值积分

所谓数值积分,指利用被积函数f(x)在有限个点上的函数值来计算积分近似值的一种方法。

一、数值积分的积分思想

积分中值定理: \int_{a}^{b}f(x)dx = (b-a)f(\xi ),\xi \in [a,b]

一重积分可以理解为求面积,积分中值定理可以看成:在x\in [a,b]上,函数f(x)x轴的面积等于以(b-a)为长,\xi \in [a,b]中一点函数值f(\xi )为宽的矩形的面积。

1、中矩形公式

                 \int_{a}^{b}f(x)dx \approx (b-a)\cdot f(\frac{a+b}{2})

2、梯形公式

                \int_{a}^{b}f(x)dx\approx (b-a)\cdot \frac{f(a)+f(b)}{2}

3、辛普森公式

               \int_{a}^{b}f(x)dx\approx (b-a)\cdot \frac{1}{6}[f(a)+4f(\frac{a+b}{2})+f(b)]

一般情况下,可用: f(\xi )\approx \sum_{k=0}^{n}w_{k}\cdot f(x_{k})

\Rightarrow \int_{a}^{b}f(x)dx = (b-a)\cdot f(\xi )\approx (b-a)\cdot \sum_{k=0}^{n}w_{k}\cdot f(x_{k}) = \sum_{k=0}^{n}A_{k}f(x_{k})  ,其中 A_{k}=(b-1)w_{k} 。

上式称为数值积分的基本公式,x_{k}称为求积节点,A_{k}称为求积系数

二、求积公式的余项和代数精度

1、余项

R\begin{bmatrix} f \end{bmatrix}=\int_{a}^{b}f(x)dx-\sum_{k=0}^{n}A_{k}\cdot f(x_{k})

2、代数精度

若数值积分公式对任意的 \leq m 次的代数多项式都准确成立,而对于x^{m+1}却不能成立,则称该数值积分公式的代数精度为 m 。

举个例子理解一下: 求梯形公式的代数精度。

解: \int_{a}^{b}f(x)dx\approx (b-a)\cdot \frac{f(a)+f(b)}{2}

  1. f(x)=1left = b-a = right
  2. f(x)=x,  left = \frac{1}{2}(b^{2}-a^{2})= right
  • 7
    点赞
  • 65
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值