目录
0、引言
在高数中,可以根据 ,求得积分。但是如果
存在以下两种情况:
是离散函数
- 无法求得原函数
那么对于这种情况,就可以利用数值积分。
所谓数值积分,指利用被积函数在有限个点上的函数值来计算积分近似值的一种方法。
一、数值积分的积分思想
积分中值定理:
一重积分可以理解为求面积,积分中值定理可以看成:在上,函数
与
轴的面积等于以
为长,
中一点函数值
为宽的矩形的面积。
1、中矩形公式
2、梯形公式
3、辛普森公式
一般情况下,可用:
,其中
。
上式称为数值积分的基本公式,称为求积节点,
称为求积系数。
二、求积公式的余项和代数精度
1、余项
2、代数精度
若数值积分公式对任意的 次的代数多项式都准确成立,而对于
却不能成立,则称该数值积分公式的代数精度为
。
举个例子理解一下: 求梯形公式的代数精度。
解:
- 当
,
- 当
,
- 当
,