教程来自人工智能社区
主要包括10节内容,实现简单卷积神经网络对MNIST数据集进行分类:conv2d + activation + pool + fc
#第1节:简单卷积神经网络的计算图设计(上) #第2节:简单卷积神经网络的计算图设计(下) #调用写好的函数构造计算图,并把计算图写入事件文件,在TensorBoard里面查看 #写好的函数:WeightsVariable、BiasesVariable、Conv2d、Activation、Pool2d、FullyConnected
#第3节:简单卷积神经网络的训练和评估会话#加入了csv文件收集训练过程的数据 #通用的评估函数,用来评估模型在给定的数据集上的损失和准确率,为了防止内存爆炸,将数据集切片#第4节:卷积滤波器核的数量与网络性能之间的关系 #研究卷积层中的卷积核个数K与在训练集和验证集上损失曲线、正确率曲线的关系 #在excise3_1_2的基础上添加了一个变量conv1_kernels_num(卷积核个数K)具体分析结果:点击打开链接 #第5节:用Excel绘制网络性能曲线 #输出结果保存在logs/excise313/eval