Tensorflow中级教程——用于Mnist的CNN

教程来自人工智能社区

主要包括10节内容,实现简单卷积神经网络对MNIST数据集进行分类:conv2d + activation + pool + fc

#第1节:简单卷积神经网络的计算图设计(上)
#第2节:简单卷积神经网络的计算图设计(下)
#调用写好的函数构造计算图,并把计算图写入事件文件,在TensorBoard里面查看
#写好的函数:WeightsVariable、BiasesVariable、Conv2d、Activation、Pool2d、FullyConnected

#第3节:简单卷积神经网络的训练和评估会话
#加入了csv文件收集训练过程的数据
#通用的评估函数,用来评估模型在给定的数据集上的损失和准确率,为了防止内存爆炸,将数据集切片

#第4节:卷积滤波器核的数量与网络性能之间的关系
#研究卷积层中的卷积核个数K与在训练集和验证集上损失曲线、正确率曲线的关系
#在excise3_1_2的基础上添加了一个变量conv1_kernels_num(卷积核个数K)
具体分析结果:点击打开链接

#第5节:用Excel绘制网络性能曲线
#输出结果保存在logs/excise313/eval
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值