卷积神经网络训练三个概念(epoch,迭代次数,batchsize)

总结下训练神经网络中最最基础的三个概念:Epoch, Batch, Iteration。

1. 名词解释

epoch:训练时,所有训练数据集都训练过一次。

batch_size:在训练集中选择一组样本用来更新权值。1个batch包含的样本的数目,通常设为2的n次幂,常用的包括64,128,256。 网络较小时选用256,较大时选用64。

iteration​:训练时,1个batch训练图像通过网络训练一次​(一次前向传播+一次后向传播),每迭代一次权重更新一次;测试时,1个batch测试图像通过网络一次​(一次前向传播)。所谓iterations就是完成一次epoch所需的batch个数

 

2. 换算关系

\mathbf{Number ~ of ~ Batches = \frac{Training ~ Set ~ Size}{Batch ~ Size}}

实际上,梯度下降的几种方式的根本区别就在于上面公式中的 Batch Size不同。

 

*注:上表中 Mini-Batch 的 Batch 个数为 N / B + 1 是针对未整除的情况。整除则是 N / B。

3. 示例

CIFAR10 数据集有 50000 张训练图片,10000 张测试图片。现在选择 Batch Size = 256 对模型进行训练。

  • 每个 Epoch 要训练的图片数量:50000
  • 训练集具有的 Batch 个数:50000 / 256 = 195 + 1 = 196
  • 每个 Epoch 需要完成的 Batch 个数:196
  • 每个 Epoch 具有的 Iteration 个数:196
  • 每个 Epoch 中发生模型权重更新的次数:196
  • 训练 10 代后,模型权重更新的次数:196 * 10 = 1960
  • 不同代的训练,其实用的是同一个训练集的数据。第 1 代和第 10 代虽然用的都是训练集的五万张图片,但是对模型的权重更新值却是完全不同的。因为不同代的模型处于代价函数空间上的不同位置,模型的训练代越靠后,越接近谷底,其代价越小。

参考:https://blog.csdn.net/qq_36447181/article/details/80149590

          https://zhuanlan.zhihu.com/p/29409502

### 使用卷积神经网络进行图像分类的实例 #### 数据准备与预处理 为了构建一个有效的卷积神经网络(CNN),首先需要准备好用于训练的数据集。以猫狗大战数据集为例,该数据集中包含了4000张图片,其中2000只为猫,另外2000只为狗[^2]。 ```python from keras.preprocessing.image import ImageDataGenerator train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1./255) training_set = train_datagen.flow_from_directory('dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary') test_set = test_datagen.flow_from_directory('dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary') ``` 这段代码展示了如何利用Keras库中的`ImageDataGenerator`类来增强图像并调整其尺寸至适合输入到CNN模型中所需的格式。 #### 构建卷积神经网络架构 接下来定义CNN的具体结构,这通常由多个交替排列的卷积层和池化层构成,再加上若干个全连接层完成最终预测任务[^3]。 ```python import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense cnn_model = Sequential([ Conv2D(32, (3, 3), activation='relu', input_shape=[64, 64, 3]), MaxPooling2D(pool_size=(2, 2)), Conv2D(64, (3, 3), activation='relu'), MaxPooling2D(pool_size=(2, 2)), Flatten(), Dense(units=128, activation='relu'), Dense(units=1, activation='sigmoid')]) cnn_model.compile(optimizer ='adam', loss='binary_crossentropy', metrics=['accuracy']) ``` 这里创建了一个简单的两层卷积加最大池化的组合,并通过扁平化操作将三维矩阵转化为一维向量送入后续密集层做二元分类。 #### 训练过程 一旦完成了上述准备工作之后就可以开始正式训练这个卷积神经网络了: ```python history = cnn_model.fit(x=training_set, validation_data=test_set, epochs=25) ``` 此命令会启动迭代优化流程,在给定数量epoch内不断更新权重直至收敛或达到预定的最大循环次数为止。 #### 测试与评估 当训练完成后还需要对新样本执行推理运算检验泛化能力;同时也应该统计一些指标比如准确率、召回率等帮助理解模型表现情况。 ```python loss, accuracy = cnn_model.evaluate(test_set) print(f'Test Accuracy: {accuracy}') ``` 以上就是基于Python环境下使用TensorFlow/Keras框架实现的一个简单版本猫咪狗狗辨识系统的全部步骤介绍。
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值