Dockerflie:tf-nightly-gpu-docker-cuda11.1

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
#
# THIS IS A GENERATED DOCKERFILE.
#
# This file was assembled from multiple pieces, whose use is documented
# throughout. Please refer to the TensorFlow dockerfiles documentation
# for more information.

ARG UBUNTU_VERSION=18.04

ARG ARCH=
ARG CUDA=11.1
FROM nvidia/cuda${ARCH:+-$ARCH}:${CUDA}-base-ubuntu${UBUNTU_VERSION} as base
# ARCH and CUDA are specified again because the FROM directive resets ARGs
# (but their default value is retained if set previously)
ARG ARCH
ARG CUDA
ARG CUDNN=8.0.4.30-1
ARG CUDNN_MAJOR_VERSION=8
ARG LIB_DIR_PREFIX=x86_64
ARG LIBNVINFER=7.2.1-1
ARG LIBNVINFER_MAJOR_VERSION=7

# Needed for string substitution
SHELL ["/bin/bash", "-c"]
# Pick up some TF dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
        build-essential \
        cuda-command-line-tools-${CUDA/./-} \
        libcublas-${CUDA/./-} \
        cuda-nvrtc-${CUDA/./-} \
        libcufft-${CUDA/./-} \
        libcurand-${CUDA/./-} \
        libcusolver-${CUDA/./-} \
        libcusparse-${CUDA/./-} \
        curl \
        libcudnn8=${CUDNN}+cuda${CUDA} \
        libfreetype6-dev \
        libhdf5-serial-dev \
        libzmq3-dev \
        pkg-config \
        software-properties-common \
        unzip

# Install TensorRT if not building for PowerPC
RUN [[ "${ARCH}" = "ppc64le" ]] || { apt-get update && \
        apt-get install -y --no-install-recommends libnvinfer${LIBNVINFER_MAJOR_VERSION}=${LIBNVINFER}+cuda${CUDA} \
        libnvinfer-plugin${LIBNVINFER_MAJOR_VERSION}=${LIBNVINFER}+cuda${CUDA} \
        && apt-get clean \
        && rm -rf /var/lib/apt/lists/*; }

# For CUDA profiling, TensorFlow requires CUPTI.
ENV LD_LIBRARY_PATH /usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/lib64:$LD_LIBRARY_PATH

# Link the libcuda stub to the location where tensorflow is searching for it and reconfigure
# dynamic linker run-time bindings
RUN ln -s /usr/local/cuda/lib64/stubs/libcuda.so /usr/local/cuda/lib64/stubs/libcuda.so.1 \
    && echo "/usr/local/cuda/lib64/stubs" > /etc/ld.so.conf.d/z-cuda-stubs.conf \
    && ldconfig

# See http://bugs.python.org/issue19846
ENV LANG C.UTF-8


# Install Pythyon 3.8
RUN apt-get update && apt-get install -y \
    python3.8

RUN apt-get update && apt-get install -y python3-pip

RUN python3.8 -m pip --no-cache-dir install --upgrade \
    pip \
    setuptools

# Install needed packages for Our Deep learning program
RUN python3.8 -m pip --no-cache-dir install \
    tensorflow_datasets \
    opencv-python \
    pydicom

# Install tensorflow_examples
RUN apt-get install -y --no-install-recommends git
RUN python3.8 -m pip install -q git+https://github.com/tensorflow/examples.git
# Install library for cv2
RUN apt install -y libgl1-mesa-glx
# Jupyter Themes
RUN python3.8 -m pip --no-cache-dir install jupyterthemes
RUN jt -t oceans16 -fs 115 -nfs 125 -tfs 115 -dfs 115 -ofs 115 -cursc r -cellw 80% -lineh 115 -altmd  -kl -T -N
# Install vim
RUN apt-get install -y vim
# Make link to libcusolver.so.10, since it's required when registering GPU devices
RUN ln /usr/local/cuda/lib64/libcusolver.so.11 /usr/local/cuda/lib64/libcusolver.so.10

# Some TF tools expect a "python" binary
RUN ln -s $(which python3.8) /usr/local/bin/python

# Options:
#   tensorflow
#   tensorflow-gpu
#   tf-nightly
#   tf-nightly-gpu
# Set --build-arg TF_PACKAGE_VERSION=1.11.0rc0 to install a specific version.
# Installs the latest version by default.
ARG TF_PACKAGE=tf-nightly-gpu
ARG TF_PACKAGE_VERSION=2.5.0.dev20201207
RUN python3.8 -m pip install --no-cache-dir ${TF_PACKAGE}${TF_PACKAGE_VERSION:+==${TF_PACKAGE_VERSION}}

COPY ./bashrc /etc/bash.bashrc
RUN chmod a+rwx /etc/bash.bashrc

RUN python3.8 -m pip install --no-cache-dir jupyter matplotlib
# Pin ipykernel and nbformat; see https://github.com/ipython/ipykernel/issues/422
RUN python3.8 -m pip install --no-cache-dir jupyter_http_over_ws ipykernel==5.1.1
# Ignore installing nbformat==4.4.0. making Conflict Issue
RUN jupyter serverextension enable --py jupyter_http_over_ws

RUN mkdir -p /tf/tensorflow-tutorials && chmod -R a+rwx /tf/
RUN mkdir /.local && chmod a+rwx /.local
RUN apt-get install -y --no-install-recommends wget
# some examples require git to fetch dependencies
WORKDIR /tf/tensorflow-tutorials
RUN wget https://raw.githubusercontent.com/tensorflow/docs/master/site/en/tutorials/keras/classification.ipynb
RUN wget https://raw.githubusercontent.com/tensorflow/docs/master/site/en/tutorials/keras/overfit_and_underfit.ipynb
RUN wget https://raw.githubusercontent.com/tensorflow/docs/master/site/en/tutorials/keras/regression.ipynb
RUN wget https://raw.githubusercontent.com/tensorflow/docs/master/site/en/tutorials/keras/save_and_load.ipynb
RUN wget https://raw.githubusercontent.com/tensorflow/docs/master/site/en/tutorials/keras/text_classification.ipynb
RUN wget https://raw.githubusercontent.com/tensorflow/docs/master/site/en/tutorials/keras/text_classification_with_hub.ipynb
COPY readme-for-jupyter.md README.md
RUN apt-get autoremove -y && apt-get remove -y wget
WORKDIR /tf
EXPOSE 8888

RUN python3.8 -m ipykernel.kernelspec

CMD ["bash", "-c", "source /etc/bash.bashrc && jupyter notebook --notebook-dir=/tf --ip 0.0.0.0 --no-browser --allow-root"]

参考文献:
https://github.com/studio-luke/tf-nightly-gpu-docker-cuda11.1/blob/master/dockerfiles/gpu-jupyter-cuda11.1.Dockerfile

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值