人工智能技术在无人艇的避碰规划算法研究实现

目录

前言

背景与意义

技术思路

最后💯


前言

        📅大四是整个大学期间最忙碌的时光,一边要忙着准备考研,考公,考教资或者实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

        🚀对毕设有任何疑问都可以问学长哦!

        本次分享的课题是

        🎯人工智能技术在无人艇的避碰规划算法研究实现

背景与意义

        人工智能技术在无人艇的避碰规划算法研究中具有重要的背景和意义。随着无人艇技术的快速发展,尤其是在海洋探索、环境监测和物流运输等领域的广泛应用,其安全性和自主性成为亟需解决的关键问题。有效的避碰规划算法可以帮助无人艇在复杂的海洋环境中,实时识别和预测周围动态物体(如其他船只、浮标和障碍物),并制定出安全、高效的航行路径,从而减少碰撞风险,保障航行安全。人工智能技术,特别是深度学习和强化学习的应用,能够通过学习历史数据和环境特征,提升算法的智能化水平,使无人艇具备更强的自主决策能力和适应性。这不仅提高了无人艇的操作效率,还为其在复杂环境中的应用拓展了边界。

技术思路

        环境建模是将现实物理空间抽象为可处理的算法空间的过程,这一过程对理解环境变量、降低规划和计算复杂性至关重要。常见的环境建模方法包括可视图法、Voronoi图法和栅格法。可视图法通过多边形表示障碍物,在搜索全局最优路径时具有较强的优势,但其时间复杂度高且可能导致碰撞。Voronoi图法以其较快的搜索速度和安全路径的优势而受到青睐,但其路径可能偏长且需依赖定位传感器。栅格法通过将工作空间离散化为网格,搜索路径的灵活性和速度可调,但其性能有限,难以获得全局最优路径并可能产生冗余点。

环境建模方法

优点

缺点

可视图法

能搜索到全局最优路径

时间复杂度高;有发生碰撞的危险

Voronoi图法

搜索速度快;保证路径的安全性

搜索节点有局限性,路径较长;需要依赖定位传感器

栅格法

搜索速度可以根据网格密度调节

搜索性能有限,得不到全局最优路径;冗余点多

        可视图法的优点在于能够找到全局最优路径,缺点则是时间复杂度高且存在碰撞风险。Voronoi图法的计算速度快且能保证路径安全性,但搜索节点有限且路径较长。栅格法则通过调节网格密度来提高搜索速度,但在复杂地图中效果有限,且可能因锯齿效应导致冗余。通过对比这些方法,可以选择最适合特定无人艇避碰规划的环境建模策略,以提高规划效率和安全性。

二、全局路径规划

        进化算法是一种基于自然选择和遗传学原理的优化算法,适用于复杂环境中的全局路径规划。该算法通过模拟种群进化过程,使用选择、交叉和变异等操作来生成新的解,从而不断优化路径。进化算法的优点在于其强大的全局搜索能力,可以适应高度复杂和动态变化的环境。同时,进化算法的改进方法多种多样,如引入混合策略、适应性选择和多种群策略等,以增强其探索能力和收敛速度。然而,进化算法也存在一些缺点,尤其是容易陷入局部最优解,导致在大多数情况下只能找到次优解。因此,在实际应用中,通常需要结合其他优化策略来提高其性能。

代码示例:

import numpy as np

def fitness_function(path):
    return -np.sum(np.linalg.norm(np.diff(path, axis=0), axis=1))

def mutate(path):
    idx = np.random.randint(1, len(path)-1)
    path[idx] += np.random.normal(0, 0.1, size=path[idx].shape)

def crossover(parent1, parent2):
    cp = np.random.randint(1, len(parent1)-1)
    return np.vstack((parent1[:cp], parent2[cp:])), np.vstack((parent2[:cp], parent1[cp:]))

def genetic_algorithm(population, generations):
    for _ in range(generations):
        population = sorted(population, key=fitness_function, reverse=True)
        next_gen = population[:2]
        while len(next_gen) < len(population):
            p1, p2 = np.random.choice(population[:10], 2, replace=False)
            next_gen.extend(mutate(crossover(p1, p2)[0]))
            next_gen.extend(mutate(crossover(p1, p2)[1]))
        population = next_gen
    return population[0]

# 初始化种群并运行
initial_population = [np.random.rand(10, 2) for _ in range(100)]
best_path = genetic_algorithm(initial_population, generations=100)

        启发式搜索算法是一类基于特定启发式规则来引导搜索过程的路径规划算法。该算法通过评估当前状态与目标状态之间的距离,选择最有可能的路径节点进行扩展,以实现快速找到最短路径的目标。启发式搜索算法的优势在于其能够快速有效地找到最优路径,尤其是在静态环境中表现良好。然而,随着计算范围的扩大,启发式算法的计算时间和内存消耗会显著增加,这导致其在处理大规模或复杂场景时适应性不足。在实际应用中,常常需要对启发式函数进行优化,以减少计算开销并提高算法效率。

代码示例:

import heapq

def heuristic(a, b):
    return np.linalg.norm(a - b)

def a_star(start, goal, graph):
    open_set = [(0, start)]
    came_from = {}
    g_score = {node: float('inf') for node in graph}
    g_score[start] = 0

    while open_set:
        current = heapq.heappop(open_set)[1]
        if current == goal:
            return reconstruct_path(came_from, current)

        for neighbor in graph[current]:
            tentative_g_score = g_score[current] + distance(current, neighbor)
            if tentative_g_score < g_score[neighbor]:
                came_from[neighbor] = current
                g_score[neighbor] = tentative_g_score
                if neighbor not in [i[1] for i in open_set]:
                    heapq.heappush(open_set, (g_score[neighbor] + heuristic(neighbor, goal), neighbor))

    return []

def reconstruct_path(came_from, current):
    path = [current]
    while current in came_from:
        current = came_from[current]
        path.append(current)
    return path[::-1]

# 示例图形
graph = {(0, 0): [(0, 1), (1, 0)], (0, 1): [(1, 1)], (1, 0): [(1, 1)], (1, 1): []}
start, goal = (0, 0), (1, 1)
path = a_star(start, goal, graph)

        在进化算法中,可以通过融合多种优化策略来增强其全局搜索能力,或者引入局部搜索机制以提高解的质量。而对于启发式搜索算法,则可以采用改进的启发式函数和动态规划技术,以降低计算复杂度并提高适应性。通过这些改进,算法在全局路径规划中的应用将更加高效和可靠,为水面无人艇的自主导航和避碰提供更强有力的支持。

三、局部路径规划

        局部路径规划是通过传感器获取周围环境信息和无人船位置,融合各种传感器数据建立环境模型,并利用相应算法进行路径规划的过程。常用的局部路径规划算法包括人工势场法、快速扩展随机树法(RRT)和动态窗口法(DWA)。这些算法各具特点,适用于不同的环境和需求,通过实时决策和动态调整为无人船的安全航行提供支持。

        人工势场法(APF)是水面无人艇局部路径规划中一种常用的算法,以其模型简单、计算快速和实时性强的优点受到关注。然而,该方法可能会面临局部最优解和受力不平衡的问题。研究者们提出了多种改进措施,包括修改引力和斥力的势场模型、与其他算法结合以及采用不同的环境建模方法。例如,离散人工势场法(DAPF)通过将环境模型离散化为栅格地图,成功解决了局部最优和受力平衡的问题。

代码示例:

import numpy as np

def potential_field(position, goal, obstacles):
    attractive = 0.5 * np.linalg.norm(position - goal)**2
    repulsive = np.sum([1.0 / np.linalg.norm(position - obs) for obs in obstacles if np.linalg.norm(position - obs) < 1])
    return attractive - repulsive

def move_towards_goal(position, goal, obstacles):
    force = potential_field(position, goal, obstacles)
    direction = (goal - position) / np.linalg.norm(goal - position)
    return position + direction * force

# 示例使用
start = np.array([0, 0])
goal = np.array([5, 5])
obstacles = [np.array([2, 2]), np.array([3, 3])]

for _ in range(100):
    start = move_towards_goal(start, goal, obstacles)
    print(f"Current position: {start}")
    if np.linalg.norm(start - goal) < 0.1:
        break

        快速扩展随机树法(RRT)适合于在复杂和动态环境中进行路径规划,但生成的路径通常不是最优的。通过引入启发式信息、改变搜索策略和结合其他算法,RRT的性能得到了提升,如结合COLREGS规则的改进RRT算法。动态窗口法(DWA)则通过在速度空间中采样多组速度值,模拟各速度下的轨迹,以找到最短时间内达到目标的路径。DWA与其他算法的结合,如与A*算法的结合,可以考虑无人船的动力学性能并优化路径规划。尽管这些算法在实际应用中表现出色,但仍需进一步考虑外部环境因素,以提高适应性和可靠性。

🚀海浪学长的作品示例:

大数据算法项目

机器视觉算法项目

 

微信小程序项目

Unity3D游戏项目

最后💯

🏆为帮助大家节省时间,如果对开题选题,或者相关的技术有不理解,不知道毕设如何下手,都可以随时来问学长,我将根据你的具体情况,提供帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值