目录
前言
课题背景和意义
实现技术思路
一、网络流量预测评价指标
二、基于深度学习的网络流量预测方法
实现效果图样例
最后
前言
📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。
🚀对毕设有任何疑问都可以问学长哦!
选题指导: https://blog.csdn.net/qq_37340229/article/details/128243277
大家好,这里是海浪学长毕设专题,本次分享的课题是
🎯基于深度学习的网络流量预测研究
课题背景和意义
精准地预判网络流量变化趋势可以帮助运营商准确预估网络的使用情况,合理分配并高效利用网络资源,
以满足日益增长且多样化的用户需求
随着 5G
、边缘计算、
NFV
等技术的发展,对网络进 行精细化、自动化、智能化运维及管理将成为新的挑战。为了应对这一挑战,需要对边缘网络、城域网、骨干网等多个层级的应用级网络流量进行精准感知。而网络流量预测能力则是核心技术之一。精准的网络流量预测技术能够实现如下功能:帮助改善通信网络管理。网络流量的准确预测可以帮助运营商及早应对即将出现的拥堵,提前进行网络扩容、调整和优化。提升通信网络效能。流量的准确预测,使得根据实际业务需求弹性分配资源成为可能。在闲时,网络需求量低,可以使低负载的部分基站进入休眠节能状态,并动态调整基站覆盖范围,待忙时,再激活这部分基站,进而减少基站能耗 。定制扩展网络增值服务。目前,运营商资费和商业模式都较为单一,对业务和用户的个性化服务不足。对业务流量分别进行预测,有助于针对不同业务提供差异化网络服务。
实现技术思路
一、网络流量预测评价指标
网络流量预测模型的性能多用误差评价指标来衡量。误差越大,则预测准确率越低,所建立的网络流量预测模型性能越差。评价指标如下:
(1)平均绝对误差
[13
(
]
Mean Absolute Error
,
MAE
)是绝对误差的平均值,它可以很好地反映预测值误差的实际情况,当预测值与真实值完全吻合时等于0,即完美模型,误差越大,该值越大。
(2)均方根误差[14(] Root Mean Square Error,RMSE也称标准误差,其取值范围是 [0,+∞] ,当预测值与真实值完全吻合时等于0,即完美模型,误差越大,该值越大。
(3)R-squared[15] 将预测结果转换为准确度,其取值范围是 [0,1] ,针对不同问题的预测准确度,可以比较并判断所提模型更适合预测哪一类问题。
二、基于深度学习的网络流量预测方法
基于深度学习的网络流量预测方法
近年来,深度学习方法因在网络流量预测方面具有显著效果而受到研究者的广泛关注。
深度信念网络
深度信念网络(
Deep Belief Networks
,
DBN
是由多个受限玻尔兹曼机(Restricted Boltzmann Machines
,RBM)为学习模块的组合
[28]
。
RBM
是两层无向图形模型,由一个可见层和一个隐藏层组成,且网络层间全连接
,每层中的每个单元都通过无向边与另一层的所有单元连接,同一层中的单元彼此断开。

卷积神经网络
在深度学习领域中,卷积神经网络(
Convolutional Neural Networks,
CNN
)是重要且常见的一种模型,起初是为识别图片而设计,因而在处理图片类二维数据中具有较大优势。卷积神经网络可以自动学习特征,能够避免手工提取特征造成的人为误差。典型的卷积神经网络主要由输入层、卷积层、池化层、全连接层及输出层组成,具体结构如图:
循环神经网络和长短时记忆网络
循环神经网络(
Recurrent Neural Networks
,
RNN
)是一种反馈神经网络。在
1982
年提出Hopfield神经网络被公认为循环神经网络的始祖。循环神经网络在训练时很容易出现梯度消失和梯度爆炸的问题。为了解决循环神经网络的梯度消失问题,提出了长短时记忆网络(LSTM)
改进型神经网络
单一的神经网络结构难以满足实际网络流量预测需求 。因此,本领域的研究人员开始尝试对不同的神经网络结构进行修改来提高预测的精度。下面分别介绍几种典型的改进方案
(1)实时性
对网络流量进行实时检测,可以帮助网络运营者进行动态智能化服务部署,提高资源利用率。针对大规模网络中流量矩阵难以实时预测的问题,提出了基于卷积神经网络、深度信念网络和循环神经网络的流量预测模型,并从整体预测流量矩阵、预测每个起点—终点的流量和预测矫正过的流量矩
(2)突发性
由于网络流量具有突发性的明显特征,其时间序列呈现非线性,传统的线性方法很难准确地进行预测。针对此问题,
提出用小波变换的方法将原始流量分解为一个近似序列和几个细节序列。在此基础上,通过长短时记忆网络来预测流量变化趋势,并以多尺度提取突发信息,以完成对未来流量的预测。
(3)时空性
随着无线网络的飞速发展,基站的自我管理和主动调整能力变得至关重要。提出了一种时空卷积网络(LA-ResNet),
该网络使用一种注意力机制来解决时空建模并预测无线网络流量。
实现效果图样例
根据各类终端出货情况,参考中国联通现网4G用户渗透率和中国移动、中国电信现网4G用户渗透率,预测2020 ~2022年的4G&5G用户渗透率,移动网用户数×4G&5G用户渗透率得到4G&5G用户数。
方案一:参考4G开网初期4G用户/4G+3G用户渗透率:8%、32%、54%。
方案二:参考4G开网初期4G终端/4G+3G终端渗透率:13%、39%、54%。

我是海浪学长,创作不易,欢迎点赞、关注、收藏、留言。
毕设帮助,疑难解答,欢迎打扰!
最后