毕业设计:基于深度学习车间危险行为识别系统

目录

前言

课题背景和意义

实现技术思路

一、 算法技术理论

1.1 卷积神经网络

1.2  图卷积

二、 数据集

2.1 数据集

2.2 数据扩充

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

最后


前言

    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

🚀对毕设有任何疑问都可以问学长哦!

    选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

       🎯基于深度学习车间危险行为识别系统

课题背景和意义

       车间安全是工业生产过程中的重要问题。然而,传统的车间安全监测方法往往依赖于人工巡检,效率低下且易受主观因素影响。基于深度学习的车间危险行为识别系统能够通过分析车间图像和视频数据,自动检测和识别危险行为,如不当佩戴安全装备、违规操作等,从而提高车间安全管理的效率和准确性。该课题的研究将为工业车间的安全监测和事故预防提供有效的技术支持。

实现技术思路

一、 算法技术理论

1.1 卷积神经网络

       传统方法没有考虑到动作序列上的相关性,也没有区分空间和时间信息,因此神经网络无法有效地提取有用的信息。此外,传统方法还忽略了关节点之间的关联信息,如人体关节点之间的刚性连接。为了解决这些问题提出了一种融入注意力机制的图神经网络方法来识别生产行为。这种方法充分考虑了动作序列在时间上的相关性,并区分了空间和时间信息,从而使神经网络能够更有效地提取有用的信息。此外,该方法还利用了关节点之间的关联信息。通过引入注意力机制,重点关注具有更高相关性和重要性的关节点,从而提高了行为识别的准确性。

毕业设计:基于深度学习车间危险行为识别系统

       卷积神经网络是一种深度学习模型,广泛应用于图像处理和计算机视觉任务中。它的设计灵感源自生物视觉系统中的神经细胞的工作原理,通过模拟图像中的局部感知和参数共享来实现高效的特征提取。卷积神经网络的核心组件是卷积层,它由一组卷积核(或滤波器)组成,每个卷积核都可以学习到不同的特征。卷积操作通过将卷积核滑动到输入图像上的不同位置,并对局部区域进行加权求和来提取特征。通过多个卷积核的使用,网络可以学习到不同尺度和抽象级别的特征。

毕业设计:基于深度学习车间危险行为识别系统

       池化层用于减小特征图的尺寸并保留重要的特征信息。常用的池化操作包括最大池化和平均池化,它们分别提取局部区域的最大值或平均值作为池化后的特征。积神经网络还包括激活函数和全连接层。激活函数引入非线性变换,增加网络的表达能力;全连接层将前一层的特征映射与权重矩阵相乘,并通过激活函数输出最终的分类结果或回归值。卷积神经网络通过反向传播算法进行优化,通过最小化损失函数来调整网络参数,使其能够更好地适应特定的任务。

毕业设计:基于深度学习车间危险行为识别系统

class GNNModel(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(GNNModel, self).__init__()
        self.conv1 = gnn.GCNConv(input_dim, hidden_dim)
        self.conv2 = gnn.GCNConv(hidden_dim, output_dim)

    def forward(self, data):
        x, edge_index = data.x, data.edge_index
        x = self.conv1(x, edge_index)
        x = torch.relu(x)
        x = self.conv2(x, edge_index)
        return x

# 构建图数据
graph_data = Data(x=torch.randn(10, 16), edge_index=torch.tensor([[0, 1, 2, 2, 3, 4, 5, 6, 7, 8],
                                                                   [1, 2, 3, 4, 5, 6, 7, 8, 9, 9]]))

1.2  图卷积

       图卷积神经网络是基于卷积神经网络的一种改进,它能够适用于非欧式的输入数据结构,如图形和网络数据。与传统卷积神经网络使用卷积操作在规则网格上提取特征不同,GCN使用图卷积操作在图结构上进行特征提取。图卷积操作在每个节点的邻居节点上进行卷积,以捕捉节点与其邻居之间的关系。通过在图的不同层级上进行多次图卷积操作,GCN能够逐渐扩展感受野,并在整个图结构上提取更丰富的特征。

       在图卷积神经网络中,每个节点都有一个特征向量,该向量可以表示节点的属性或特征。通过学习节点之间的连接关系和特征传播,GCN可以在图结构上进行有效的特征学习和表示学习,从而适应非欧式数据的处理任务,如节点分类、图分类、链接预测等。

毕业设计:基于深度学习车间危险行为识别系统

图神经网络继承了卷积神经网络的一些性质和特点。在图卷积神经网络中,每个节点的邻居节点共享相同的卷积核参数。这意味着在同一卷积层上,不同节点的特征提取过程使用相同的权重,从而减少了网络的参数量,提高了计算效率。随着卷积层数的增加,感受野也随之增大。在图卷积神经网络中,通过多层的图卷积操作,网络可以逐渐扩展感受野,即每个节点能够获取更广泛的邻居信息。这样,在网络的高层时,参与运算的信息量更大,有助于提取更全局和抽象的特征。

毕业设计:基于深度学习车间危险行为识别系统

在使用图神经网络时,常使用对称拉普拉斯算子。与卷积神经网络不同,图卷积神经网络能够用于非欧式拓扑图的空间特征提取。图卷积神经网络的理论基础是图谱论,它利用图的拉普拉斯矩阵的特征值和特征向量来研究图的性质。

毕业设计:基于深度学习车间危险行为识别系统

二、 数据集

2.1 数据集

       由于网络上没有现有的合适的数据集,我决定自己去车间进行拍摄,收集图片和视频,并制作了一个全新的数据集。这个数据集包含了各种车间场景的图像和视频,其中包括作业人员佩戴安全装备的情况以及其他相关安全设施。通过现场拍摄,我能够捕捉到真实的车间场景和多样的工作环境,这将为我的研究提供更准确、可靠的数据基础。我相信这个自制的数据集将为车间危险行为识别系统的研究提供有力的支持,并为车间安全管理领域的发展做出积极贡献。

2.2 数据扩充

       为了进一步丰富数据集和提高模型的鲁棒性,我进行了数据扩充的工作。通过图像处理技术和数据增强方法,我对原始图像和视频进行了旋转、缩放、翻转等操作,生成了更多样化和丰富的训练样本。这些扩充后的数据能够增加模型对不同角度、光照条件和姿态变化的适应能力,提升了车间危险行为识别系统的准确性和鲁棒性。

datagen = ImageDataGenerator(
    rotation_range=20,  # 随机旋转角度范围
    width_shift_range=0.1,  # 随机水平平移范围
    height_shift_range=0.1,  # 随机垂直平移范围
    shear_range=0.2,  # 随机错切变换范围
    zoom_range=0.2,  # 随机缩放范围
    horizontal_flip=True,  # 随机水平翻转
    fill_mode='nearest'  # 填充像素的策略
)

# 数据增强并保存生成的扩充数据
augmented_data = []
augmented_labels = []

for i in range(train_data.shape[0]):
    # 将原始样本转换为4D张量(适用于ImageDataGenerator的输入格式)
    sample = np.expand_dims(train_data[i], axis=0)

    # 生成扩充样本并保存
    augmented_samples = datagen.flow(sample, batch_size=1)
    for _ in range(5):  # 生成5个扩充样本
        augmented_data.append(augmented_samples.next()[0])
        augmented_labels.append(train_labels[i])

三、实验及结果分析

3.1 实验环境搭建

  • 操作系统:通常可以选择常见的操作系统,如Windows、Linux或macOS。
  • Python:深度学习常用的编程语言是Python。确保安装Python解释器,可以使用Anaconda等发行版来简化环境配置。
  • 深度学习框架:选择合适的深度学习框架,如TensorFlow、PyTorch或Keras。这些框架提供了高级API和工具,简化了模型构建和训练的过程。

3.2 模型训练

       网络训练过程包括数据准备、网络架构设计、参数初始化、前向传播、损失计算、反向传播、参数更新等步骤。通过迭代优化网络参数,使网络能够拟合训练数据并在未见过的数据上泛化,以达到预定的性能指标。

毕业设计:基于深度学习车间危险行为识别系统

       通过分析混淆矩阵,可以得到各个行为的准确率以及它们之间的误判情况,从而全面评估算法在不同行为分类上的性能。混淆矩阵提供了准确率、行为准确率和误判情况等信息,帮助研究人员了解分类器的整体性能、特定行为的分类准确率以及混淆情况。这为进一步研究和结果分析提供了重要参考,促进算法的改进和优化。

毕业设计:基于深度学习车间危险行为识别系统

       通过调整和改变损失函数,可以优化模型的性能、实现特定目标、调优模型的某些方面,并比较不同模型的性能。选择合适的损失函数对于提高模型的性能和适应性至关重要。损失函数的变化是为了优化模型的性能。损失函数的目标是衡量模型预测结果与真实标签之间的差异,通过最小化损失函数来找到最优模型参数。不同的损失函数对应不同的问题和任务,如交叉熵损失函数用于分类问题、均方误差损失函数用于回归问题。通过选择合适的损失函数,可以使模型在训练数据上达到更好的拟合效果,提高预测准确性。

毕业设计:基于深度学习车间危险行为识别系统

model = tf.keras.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(image_width, image_height, 3)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(num_classes, activation='softmax')
])

# 编译模型
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

# 训练模型
model.fit(train_data, train_labels, epochs=10, batch_size=32)

# 加载测试数据和标签
test_data = np.load('test_data.npy')
test_labels = np.load('test_labels.npy')

# 数据预处理和归一化
test_data = test_data.astype('float32') / 255.0

# 评估模型
test_loss, test_acc = model.evaluate(test_data, test_labels, verbose=2)
print('Test accuracy:', test_acc)

最后

我是海浪学长,创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值