关于深度学习中矩阵的Axis(轴)

一.矩阵是深度学习中一个非常非常重要得概念,下面是关于维的一些理解

           张量的阶数有时候也称为维度,或者轴,轴这个词翻译自英文axis。譬如一个矩阵[[1,2],[3,4]],是一个2阶张量,有两个维度或轴,沿着第0个轴(为了与python的计数方式一致,本文档维度和轴从0算起)你看到的是[1,2],[3,4]两个向量,沿着第1个轴你看到的是[1,3],[2,4]两个向量。

要理解“沿着某个轴”是什么意思,不妨试着运行一下下面的代码:

import numpy as np

a = np.array([[[1,2],[3,4]],[[5,6],[7,8]]])
sum0 = np.sum(a, axis=0)
sum1 = np.sum(a, axis=1)
sum2 = np.sum(a ,axis=2)
print(sum0)
print(sum1)
print(sum2)

Axis=0 表示的是所示矩阵中最外层的“轴”,“1 5 ”,“2 6”,“3 7”...

Axis=1 表示的是剔除最外层矩阵后最外层的“”轴“  ”1 3“ “2 4 ”,“5 7”,“6 8”...

Axis=2 依此类推,剔除前面所有的”轴” ”1 2“ “3 4 ”,“5 6”,“7 8”..

因此sum分别为

[[ 6  8] [10 12]]          [[ 4  6][12 14]]                   [[ 3  7][11 15]]

 

               理解了这个“轴”,再谈谈这个“轴”的应用 ,运行下列代码:

import numpy as np

arr2 = np.random.randn(2,3)
print(arr2)

表示从标准正态分布中返回一个或多个样本值。 而(2,3)正是返回值的矩阵,由此推测返回形式为Axis=0 有2个数,Axis=1有3个数的矩阵,即

[[ 1.01679582  0.02093434 -0.48180997]   [-0.13738242  0.48746367  0.22310166]]

            由此,通过(x,y,z,...)的形式,我们便可以搭建出矩阵

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值