数学基础
走走走走走走你
这个作者很懒,什么都没留下…
展开
-
第一章 引言 & 第二章 概率论基础
1 引言估计的是什么状态?机器人的状态,是指一组完整描述他随时间运动的物理量, 比如位置、角度和速度。为什么要进行状态估计?传感器本身存在测量误差,如何以最好的方式利用传感器的不精确数据。状态估计的思想?用测量数据拟合模型,最小化测量误差。经典的卡尔曼滤波针对什么问题?受高斯观测噪声影响下,线性系统的状态估计方法。2 概率论基础概率密度函数满足全概率公理...原创 2021-08-28 20:27:41 · 286 阅读 · 0 评论 -
高斯分布的非线性变换
线性变换非线性变换对于非线性问题:这⾥ g (·) 表⽰ g : x → y,是⼀个⾮线性映射。它受零均值⾼斯噪声⼲扰,其协⽅差为 R。常用方法就是线性化,取均值处的一阶项,转化为熟悉的线性问题结论:证明: 下面将用到SMW恒等变换【参考】《机器人学中的状态估计》...原创 2021-08-31 16:34:37 · 1876 阅读 · 1 评论 -
Sherman-Morrison-Woodbury,SMW恒等式
SMW恒等式常被用在矩阵运算中的一些恒等替换以便简化计算或得到所需形式。证明:对于一个矩阵分别进行LDU和UDL分解:分解的本质是对矩阵初等变换成对角形式,然后移到等式右边;也可以直接根据矩阵的乘法和分解格式进行求解,不再赘述,可直接搜索LDU分解。两边同时取逆:对应项相等有:【参考】《机器人学中的状态估计》@深蓝学院...原创 2021-08-31 12:21:55 · 3223 阅读 · 1 评论 -
高斯推断(联合高斯概率密度函数,分解与推断)
对于⼀对服从多元正态分布的变量 (x, y),可以写出它们的联合概率密度函数:根据Bay's rule,,能不能得到条件概率和边缘概率的高斯分布?高斯推断告诉我们是可以的!是左边被拆分成两个部分的形式,因此努力方向是怎么对左边进行差分根据舒尔补理论:舒尔补理论Schur Compliment,这简单理解就是一个矩阵分解的方法两边求逆:我们只需关注高斯分布的指数部分,代入上式:这样指数部分就被拆分为两个部分的和,实际可以理解为与单个变量的多...原创 2021-08-30 19:44:41 · 3971 阅读 · 0 评论 -
矩阵求逆 QR、Cholesky 分解
目录一、QR分解二、Cholesky分解三、c++实现一、QR分解二、Cholesky分解三、c++实现原创 2020-12-25 21:34:00 · 5688 阅读 · 0 评论 -
SLAM中的非线性最小二乘问题求解方法及应用
考虑一个简单的最小二乘问题这里自变量 , f 是任意一个非线性函数,我们设它有 m 维: 。下面讨论如何求解这样一个优化问题方法一:求导分析,得到了导数为零处的极值,比较它们的函数值大小即可。(实际情况下,f 并没有一个明确的解析形式,也没办法求导分析,或者导函数相当复杂)方法二:迭代寻优这让求解导函数为零的问题,变成了一个不断寻找梯度并下降的过程。直到某个时刻增量非常小,无法再使函数下降。此时算法收敛,目标达到了一个极小,我们完成了寻找极小值的过程。在这个过程中,我们只要找原创 2020-12-24 19:39:58 · 1011 阅读 · 1 评论