机器人学中的状态估计
笔记+作业
走走走走走走你
这个作者很懒,什么都没留下…
展开
-
Sherman-Morrison-Woodbury,SMW恒等式
SMW恒等式常被用在矩阵运算中的一些恒等替换以便简化计算或得到所需形式。证明:对于一个矩阵分别进行LDU和UDL分解:分解的本质是对矩阵初等变换成对角形式,然后移到等式右边;也可以直接根据矩阵的乘法和分解格式进行求解,不再赘述,可直接搜索LDU分解。两边同时取逆:对应项相等有:【参考】《机器人学中的状态估计》@深蓝学院...原创 2021-08-31 12:21:55 · 3223 阅读 · 1 评论 -
第一章 引言 & 第二章 概率论基础
1 引言估计的是什么状态?机器人的状态,是指一组完整描述他随时间运动的物理量, 比如位置、角度和速度。为什么要进行状态估计?传感器本身存在测量误差,如何以最好的方式利用传感器的不精确数据。状态估计的思想?用测量数据拟合模型,最小化测量误差。经典的卡尔曼滤波针对什么问题?受高斯观测噪声影响下,线性系统的状态估计方法。2 概率论基础概率密度函数满足全概率公理...原创 2021-08-28 20:27:41 · 286 阅读 · 0 评论 -
高斯分布的非线性变换
线性变换非线性变换对于非线性问题:这⾥ g (·) 表⽰ g : x → y,是⼀个⾮线性映射。它受零均值⾼斯噪声⼲扰,其协⽅差为 R。常用方法就是线性化,取均值处的一阶项,转化为熟悉的线性问题结论:证明: 下面将用到SMW恒等变换【参考】《机器人学中的状态估计》...原创 2021-08-31 16:34:37 · 1876 阅读 · 1 评论 -
高斯推断(联合高斯概率密度函数,分解与推断)
对于⼀对服从多元正态分布的变量 (x, y),可以写出它们的联合概率密度函数:根据Bay's rule,,能不能得到条件概率和边缘概率的高斯分布?高斯推断告诉我们是可以的!是左边被拆分成两个部分的形式,因此努力方向是怎么对左边进行差分根据舒尔补理论:舒尔补理论Schur Compliment,这简单理解就是一个矩阵分解的方法两边求逆:我们只需关注高斯分布的指数部分,代入上式:这样指数部分就被拆分为两个部分的和,实际可以理解为与单个变量的多...原创 2021-08-30 19:44:41 · 3971 阅读 · 0 评论 -
《机器人学中的状态估计》第六讲(第七章)课后习题作业
目录1.证明:2.证明:3.证明:4.证明:5.证明:7.证明:8.证明:11.证明:12.证明:1.证明:同上一讲问题3!2.证明:3.证明:4.证明:5.证明:7.证明:8.证明:11.证明:12.证明:...原创 2020-10-02 17:13:51 · 1050 阅读 · 4 评论 -
《机器人学中的状态估计》第五讲(第六章)课后习题作业
目录1.证明对任意两个3*1的向量u和v,都有2.请用下式证明:3.证明对任意3*1向量v和旋转矩阵C,都有4.证明:1.证明对任意两个3*1的向量u和v,都有证明教材6.1.3小节中反对称矩阵的性质证明:令:等式左边:等式右边:即左边=右边2.请用下式证明:由欧拉旋转定理证明教材式(6.4)证明:等式左右两边左乘C有:只需证: 3.证明对任意3*1向量v和旋转矩阵C,都有4.证明:...原创 2020-09-16 21:07:58 · 650 阅读 · 0 评论 -
《机器人学中的状态估计》第四讲(第五章)课后习题作业
目录1.考虑离散时间系统2.考虑离散时间系统3.假设每个点为内点的概率为w=0.1,如果想选择一个内点集(n=3)的概率p=0.999,需要多少次RANSAC(随机采样一致性)迭代?1.考虑离散时间系统2.考虑离散时间系统3.假设每个点为内点的概率为w=0.1,如果想选择一个内点集(n=3)的概率p=0.999,需要多少次RANSAC(随机采样一致性)迭代?啊~这,终于发现适合我做的题了,可能是想通过一个例子感受一下RANSAC的迭代次数答:由教材式(5.3.原创 2020-09-07 18:59:05 · 888 阅读 · 0 评论 -
《机器人学中的状态估计》第三讲(第四章)课后习题作业
1、证明教材式(4.31)2、证明教材式(4.38)3、考虑如下离散时间系统原创 2020-09-01 16:54:17 · 1413 阅读 · 0 评论 -
《机器人学中的状态估计》第二讲(第三章)课后习题作业
1.考虑离散时间系统2.使用第1题的系统6.证明:原创 2020-08-24 18:43:00 · 1444 阅读 · 0 评论 -
《机器人学中的状态估计》第一讲(第二章)课后习题作业
1.1 证明高斯分布满足全概率公理即:证明:2.1原创 2020-08-16 14:15:52 · 1899 阅读 · 1 评论