人工智能之知识图谱-学习笔记

本文探讨了大数据环境下知识图谱的重要性,如何从互联网数据中提取知识以提供智能服务。提及了多位学者的高引用论文,涉及知识图谱、命名实体识别、数据交换、本体语言和知识获取等领域,展示了知识图谱在信息提取、智能服务中的应用和发展。
摘要由CSDN通过智能技术生成

知识图谱研究报告-电子版-20191120

  1. 在大数据环境下,从互联网开放环境的大数据中获得知识,用这些知识提供智能服务互联网/行业,同时通过互联网可以获得更多的知识。这是一个迭代的相互增强过程,可以实现从互联网信息服务到智能知识服务的跃迁。
  2. 王海勋被引用量最高的论文是 2003 年在 KDD 会议上发表的“Mining concept-drifting data streams using ensemble classifiers”。这篇论文提出了一个使用加权集合分类器挖掘概念漂移数据流的一般框架,经过实验证实该篇论文中所提出的方法在预测精度方面具有优于单分类器方法的显著优势,并且集合框架对于各种分类模型是有效的。
  3. 唐杰的高引用论文是 2008 年在 KDD 会议上发表的“ArnetMiner: extraction and mining of academic social networks”对其负责的知识工程实验室 ArnetMiner 系统关键问题进行讨论,整合来自在线 Web 数据库的出版物并提出一个概率框架来处理名称歧义问题,除此之外,该篇论文还描述了系统的体系结构和专家画像的主要特征,提出系统应用方法的实证评估。
  4. 韩家炜的高引用论文是 2000 年在 SIGMOD 会议上发表的“Mining frequent patterns without candidate generation”提出了一种全新的、可以用于数据的存储压缩的、关于频繁模式关键信息的频繁模式树结构,并开发一种有效的基于频繁模式树结构(FP 树结构)的挖掘方法 FP-growth,用于通过模式片段增长挖掘整套频繁模式。
  5. Ralph Grishman 的高引用论文“A maximum entropy approach to named entity recognition”介绍了一种新的统计命名实体(即“专有名称”)识别系统,称为
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>