1、神经元节点计算什么?(A)
A.神经元节点先计算线性函数(z = Wx + b),再计算激活函数。
B.神经元节点先计算激活函数,再计算线性函数(z = Wx + b)。
C.神经元节点计算函数g,函数g计算(Wx + b)。
D.在将输出应用于激活函数之前,神经元节点计算所有特征的平均值。
2、下面哪一个是Logistic损失?(B)
3、假设img是一个(32, 32, 3)数组,具有3个颜色通道:红色、绿色和蓝色的32x32像素的图像。 如何将其重新转换为列向量?(D)
A. x = img.reshape((3, 32 * 32))
B. x = img.reshape((3, 32 * 32))
C. x = img.reshape((32 * 32, 3))
D. x = img.reshape((32 * 32 * 3, 1))
4、看一下下面的这两个随机数组“a”和“b”,请问数组c的维度是多少?(D)
a = np.random.randn(2, 3) # a.shape = (2, 3)
b = np.random.randn(2, 1) # b.shape = (2, 1)
c = a + b
A.c.shape = (2, 1)
B.c.shape = (3, 2)
C.无法进行计算,因为大小不匹配。将会报错。
D.c.shape = (2, 3)
5、看一下下面的这两个随机数组“a”和“b”,请问数组c的维度是多少?(D)
A.c.shape = (4, 2)
B.c.shape = (4, 3)
C.c.shape = (3, 3)
D.无法进行计算,因为大小不匹配。将会报错。
6、假设你的每一个实例有n_x个输入特征,想一下在 X = [ x ( 1 ) , x ( 2 ) , . . . , x ( m ) ] X=[x^{(1)},x^{(2)},...,x^{(m)}] X=[x(1),x(2),...,x(m)]中,X的维度是多少?(D)
A.(1, m)
B.(m, 1)
C.(m, n_x)
D.(n_x, m)
7、回想一下,np.dot(a,b) 在a和b上执行矩阵乘法,而 a * b 执行元素方式的乘法。 看下面的这两个随机数组“a”和“b”:请问c的维度是多少?(D)
a = np.random.randn(12288, 150) # a.shape = (12288, 150)
b = np.random.randn(150, 45) # b.shape = (150, 45)
c = np.dot(a, b)
A.c.shape = (150,150)
B.c.shape = (12288, 150)
C.无法进行计算,因为大小不匹配。将会报错。
D.c.shape = (12288, 45)
8、看下面的代码片段:请问要怎么把它们向量化?
# a.shape = (3,4)
# b.shape = (4,1)
for i in range(3):
for j in range(4):
c[i][j] = a[i][j] + b[j]
A.c = a.T + b.T
B.c = a + b
C.c = a + b.T
D.c = a.T + b
9、看下面的代码:请问c的维度会是多少?(A)
a = np.random.randn(3, 3)
b = np.random.randn(3, 1)
c = a * b
A.这里将会使用广播机制,b会被复制三次,就会变成(3, 3),“”代表对应元素乘法。因此c.shape将是(3,3)
B.这里将会使用广播机制,b会被复制三次,就会变成(3, 3),“”代表两个3x3矩阵的矩阵乘法运算。因此c.shape将是(3,3)
C.这里将会使3x3矩阵A与3x1矢量相乘,从而产生3x1矢量。因此c.shape将是(3,1)。
D.这里将会报错,因为不能使用“*”对这两个矩阵进行操作。需要使用np.dot(a,b)。
10、看下面的计算图:请问输出是什么?(B)
A.J = (c - 1) * (b + a)
B.J = (a - 1) * (b + c)
C.J = a * b + b * c + a * c
D.J = (b - 1) * (c + a)