优化在深度学习中的挑战

1. 优化在深度学习中的挑战

我们在博客《机器学习中解析解和数值解的区别》中对优化问题的解析解和数值解做了区分。深度学习中绝大多数目标函数都很复杂。因此,很多优化问题并不存在解析解,而需要使用基于数值方法的优化算法找到近似解,即数值解。

这里讨论的优化算法都是这类基于数值方法的算法。为了求得最小化目标函数的数值解,我们将通过优化算法有限次迭代模型参数来尽可能降低损失函数的值。

优化在深度学习中有很多挑战。下面描述了其中的两个挑战,即局部最小值和鞍点。

1.1 局部最小值

对于目标函数 𝑓(𝑥),如果 𝑓(𝑥) 在 𝑥 上的值比在 𝑥 邻近的其他点的值更小,那么 𝑓(𝑥)可能是一个局部最小值(local minimum)。如果 𝑓(𝑥) 在 𝑥 上的值是目标函数在整个定义域上的最小值,那么 𝑓(𝑥)是全局最小值(global minimum)。

举个例子,给定函数 f ( x ) = x ⋅ c o s ( π x ) , − 1.0 ≤ x ≤ 2.0 f(x)=x\cdot cos(\pi x),-1.0\leq x\leq 2.0 f(x)=xcos(πx),1.0x2.0我们可以大致找出该函数的局部最小值和全局最小值的位置。需要注意的是,图中箭头所指示的只是大致位置。

%matplotlib inline
import d2lzh as d2l
from mpl_toolkits import mplot3d
import numpy as np

def f(x):
    return x * np.cos(np.pi * x)

d2l.set_figsize((4.5, 2.5))
x = np.arange(-1.0, 2.0, 0.1)
fig, = d2l.plt.plot(x, f(x))  # 逗号表示只取返回列表中的第一个元素
fig.axes.annotate('local minimum', xy=(-0.3, -0.25), xytext=(-0.77, -1.0),
                  arrowprops=dict(arrowstyle='->'))
fig.axes.annotate('global minimum', xy=(1.1, -0.95), xytext=(0.6, 0.8),
                  arrowprops=dict(arrowstyle='->'))
d2l.plt.xlabel('x')
d2l.plt.ylabel('f(x)');

在这里插入图片描述
深度学习模型的目标函数可能有若干局部最优值。当一个优化问题的数值解在局部最优解附近时,由于目标函数有关解的梯度接近或变成零,最终迭代求得的数值解可能只令目标函数局部最小化而非全局最小化。

1.2 鞍点

刚刚我们提到,梯度接近或变成零可能是由于当前解在局部最优解附近造成的。事实上,另一种可能性是当前解在鞍点(saddle point)附近。

举个例子,给定函数 f ( x ) = x 3 f(x)=x^3 f(x)=x3我们可以找出该函数的鞍点位置。

x = np.arange(-2.0, 2.0, 0.1)
fig, = d2l.plt.plot(x, x**3)
fig.axes.annotate('saddle point', xy=(0, -0.2), xytext=(-0.52, -5.0),
                  arrowprops=dict(arrowstyle='->'))
d2l.plt.xlabel('x')
d2l.plt.ylabel('f(x)');

在这里插入图片描述
再举个定义在二维空间的函数的例子,例如: f ( x , y ) = x 2 − y 2 f(x,y)=x^2-y^2 f(x,y)=x2y2我们可以找出该函数的鞍点位置。也许你已经发现了,该函数看起来像一个马鞍,而鞍点恰好是马鞍上可坐区域的中心。

x, y = np.mgrid[-1: 1: 31j, -1: 1: 31j]
z = x**2 - y**2

ax = d2l.plt.figure().add_subplot(111, projection='3d')
ax.plot_wireframe(x, y, z, **{'rstride': 2, 'cstride': 2})
ax.plot([0], [0], [0], 'rx')
ticks = [-1,  0, 1]
d2l.plt.xticks(ticks)
d2l.plt.yticks(ticks)
ax.set_zticks(ticks)
d2l.plt.xlabel('x')
d2l.plt.ylabel('y');

在这里插入图片描述
在图的鞍点位置,目标函数在 𝑥x 轴方向上是局部最小值,但在 𝑦y 轴方向上是局部最大值。

假设一个函数的输入为 𝑘k 维向量,输出为标量,那么它的海森矩阵(Hessian matrix)有 𝑘k 个特征值。该函数在梯度为0的位置上可能是局部最小值、局部最大值或者鞍点。

  • 当函数的海森矩阵在梯度为零的位置上的特征值全为正时,该函数得到局部最小值。
  • 当函数的海森矩阵在梯度为零的位置上的特征值全为负时,该函数得到局部最大值。
  • 当函数的海森矩阵在梯度为零的位置上的特征值有正有负时,该函数得到鞍点。

随机矩阵理论告诉我们,对于一个大的高斯随机矩阵来说,任一特征值是正或者是负的概率都是0.5 。那么,以上第一种情况的概率为 0. 5 k 0.5^k 0.5k 。由于深度学习模型参数通常都是高维的( 𝑘 很大),目标函数的鞍点通常比局部最小值更常见。

在深度学习中,虽然找到目标函数的全局最优解很难,但这并非必要。我们将逐一介绍深度学习中常用的优化算法,它们在很多实际问题中都能够训练出十分有效的深度学习模型。

1.3 小结

  • 由于优化算法的目标函数通常是一个基于训练数据集的损失函数,优化的目标在于降低训练误差。
  • 由于深度学习模型参数通常都是高维的,目标函数的鞍点通常比局部最小值更常见。

参考资料:《动手学深度学习》

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值