方差计算时分母为什么是n-1

计算方差时,分母使用 n n n n − 1 n-1 n1 主要是针对样本方差的情况,它们分别对应两种不同的处理方式:

1 分母为 n n n

  • 此时计算的是未修正的样本方差,即直接使用样本数据来估计总体方差时,使用公式:
    S 2 = 1 n ∑ i = 1 n ( x i − x ˉ ) 2 S^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 S2=n1i=1n(xixˉ)2
  • 未修正的样本方差在统计学上被认为是有偏估计(biased estimator),因为它在大多数情况下会倾向于低估总体方差的实际值。当样本量较小或者总体方差未知时,这种偏差尤为明显。

2 分母为 n − 1 n-1 n1

  • 此时计算的是修正的样本方差(或称无偏样本方差),即为了消除上述偏差,使样本方差成为总体方差的无偏估计,使用公式:
    S u n b i a s e d 2 = 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 S_{unbiased}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 Sunbiased2=n11i=1n(xixˉ)2
  • 修正后的样本方差通过除以 n − 1 n-1 n1而不是 n n n,使得当从总体中抽取一个样本时,这个样本方差的期望值恰好等于总体方差 σ 2 \sigma^2 σ2。也就是说,虽然每次抽样得到的样本方差会有所不同,但其平均值(即多次抽样后样本方差的期望值)将准确反映总体方差,这就是所谓的“无偏性

原因分析:

有偏估计的原因:

在计算样本方差时,我们使用样本均值 x ‾ \overline x x 替代了未知的总体均值 μ \mu μ。由于样本均值是基于同一组样本数据计算得出的,它与样本数据之间存在关联性,导致在计算样本方差时,样本数据与样本均值之差的平方和的总和被系统性地低估。修正样本方差的目的就是消除这种因使用样本均值而导致的偏差,使其成为总体方差的无偏估计。

无偏估计的原理:

  • 采用 n − 1 n-1 n1 作为分母的数学依据源于Bessel’s correction(贝塞尔校正)。贝塞尔校正是统计学中用来调整估计量,使之成为无偏估计的一种常用方法。
  • 当样本均值 x ‾ \overline x x 用于代替总体均值 μ \mu μ 时,样本方差的计算引入了额外的不确定性。由于样本均值是由样本数据计算出来的,它与样本数据之间存在一种“共线性”关系。这种关系使得在计算样本方差时,实际使用的自由度比样本量少一个
  • 通过除以 n − 1 n-1 n1 而不是 n n n,相当于对原有的样本方差进行了扩大,从而补偿了由于使用样本均值而产生的偏差。这样得到的修正样本方差的期望值就等于总体方差,实现了无偏估计。

综上所述,计算方差时分母选择 n n n n − 1 n-1 n1 的主要区别在于是否对样本方差进行修正以获得无偏估计。在实际应用中,尤其是当样本量较小或需要对总体方差进行精确估计时,通常推荐使用分母为 n − 1 n-1 n1 的修正样本方差公式。而在某些特殊情况下,如已知总体分布且样本量足够大时,直接使用分母为 n n n 的未修正样本方差也可能是合理的,但这需要基于特定的统计推断背景和目的来决定。

以下是耦合协调度的测算方法、公式及相关文献的详细说明: --- ### 一、耦合协调度模型核心公式 耦合协调度模型通过**耦合度(C值)**、**协调指数(T值)**和**耦合协调度(D值)**三个指标衡量系统间的协调发展水平。具体公式如下: #### 1. **耦合度(C值)** 用于衡量系统间的相互作用强度,取值范围为\[0,1\],值越大表示系统间耦合程度越高。 - **计算公式**(以两个系统为例): \[ C = \frac{2 \sqrt{U_1 \cdot U_2}}{U_1 + U_2} \] 其中,\( U_1 \)和\( U_2 \)为两个系统的综合发展指数(标准化后取值\[0,1\])。 - **多系统扩展公式**(n个系统): \[ C = \left( \frac{U_1 \cdot U_2 \cdot \ldots \cdot U_n}{\left( \frac{U_1 + U_2 + \ldots + U_n}{n} \right)^n} \right)^{1/n} \] #### 2. **协调指数(T值)** 反映系统的综合发展水平,通常为各系统综合指数的加权平均。 - **计算公式**: \[ T = \sum_{i=1}^n \beta_i U_i \] 其中,\( \beta_i \)为系统权重(需满足\( \sum \beta_i = 1 \)),默认等权重可取\( \beta_i = 1/n \) 。 #### 3. **耦合协调度(D值)** 综合C值和T值,评价系统间协调发展水平,取值范围为\[0,1\],值越大协调性越好。 - **计算公式**: \[ D = \sqrt{C \cdot T} \] --- ### 二、测算步骤 #### 1. **数据标准化** - 方法:极差法(推荐)或Z-score标准化。 - 公式(极差法): \[ U_i = \frac{X_i - X_{\text{min}}}{X_{\text{max}} - X_{\text{min}}} \] 为避免分母为0,可对标准化后的数据加0.001调整 。 #### 2. **权重计算** - **主成分分析法**:通过方差贡献率确定权重(需借助SPSS或Python实现)。 - **熵值法**:基于信息熵客观赋权,适用于无先验知识的情况 。 #### 3. **综合指数计算** - 根据权重对标准化后的指标加权求和,得到各系统综合指数\( U_1, U_2, \ldots, U_n \)。 #### 4. **耦合协调度计算** - 按上述公式依次计算C值、T值和D值。 #### 5. **协调等级划分** - 根据D值范围划分协调等级(示例): [0,0.1] 极度失调 (0.5,0.6] 勉强协调 (0.1,0.2] 严重失调 (0.6,0.7] 初级协调 (0.2,0.3] 中度失调 (0.7,0.8] 中级协调 (0.3,0.4] 轻度失调 (0.8,0.9] 良好协调 (0.4,0.5] 濒临失调 (0.9,1] 优质协调 ### 三、相关文献及工具推荐 #### 1. **核心文献** - **丛晓男 (2019)**: 《耦合度模型的形式、性质及在地理学中的若干误用》,讨论模型的理论基础与常见误用。 - **舒小林等 (2015)**: 《旅游产业与生态文明城市耦合关系及协调发展研究》,提供实证案例与数据标准化方法。 - **孙钰等 (2019)**: 《城市公共交通基础设施的经济、社会与环境效益协调发展评价》,提出协调等级划分标准。 #### 2. **操作工具** - **SPSSAU**:提供在线耦合协调度分析模块,支持数据区间化处理与自动计算- **Excel**:分步实现标准化、权重计算与公式推导(参考[CSDN教程](https://blog.csdn.net/qq_32925031/article/details/88687713))。 - **Python代码示例**: ```python import numpy as np # 计算耦合度C值(以两系统为例) U1 = np.array([0.2, 0.5, 0.8]) U2 = np.array([0.3, 0.6, 0.7]) C = 2 * np.sqrt(U1 * U2) / (U1 + U2) # 计算D值 T = 0.5 * U1 + 0.5 * U2 # 等权重 D = np.sqrt(C * T) ``` --- ### 四、注意事项 1. **数据范围**:确保所有指标值标准化后介于\[0,1\],否则可能导致D值异常。 2. **权重选择**:主成分分析法适用于指标间相关性较高的场景,熵值法则更强调数据客观性。 3. **等级划分**:不同研究可能采用不同划分标准,需根据领域文献调整。 帮我使用python计算九个省份2007-2022年的耦合协调度,我的数据如下:①生态保护综合得分:省份,2007年,2008年,2009年,2010年,2011年,2012年,2013年,2014年,2015年,2016年,2017年,2018年,2019年,2020年,2021年,2022年 山西,2.02,2.13,2.19,2.27,2.31,2.36,2.39,2.41,2.41,2.40,2.43,2.46,2.47,2.48,2.50,2.50 内蒙古,2.11,2.22,2.31,2.35,2.42,2.47,2.58,2.60,2.61,2.58,2.58,2.58,2.62,2.63,2.63,2.63 山东,2.37,2.42,2.07,2.51,2.53,2.54,2.57,2.59,2.58,2.55,2.54,2.55,2.55,2.54,2.53,2.53 河南,2.16,2.31,2.38,2.38,2.39,2.40,2.42,2.45,2.46,2.44,2.47,2.48,2.48,2.54,2.53,2.53 四川,2.15,2.29,2.29,2.34,2.33,2.34,2.36,2.39,2.46,2.52,2.55,2.52,2.50,2.51,2.50,2.50 陕西,2.07,2.16,2.25,2.34,2.43,2.43,2.48,2.50,2.51,2.50,2.47,2.45,2.46,2.51,2.49,2.49 甘肃,1.87,1.92,1.98,2.06,2.08,2.13,2.19,2.28,2.32,2.41,2.49,2.49,2.51,2.54,2.50,2.52 青海,1.92,1.94,1.98,1.97,2.13,2.16,2.17,2.21,2.21,2.26,2.32,2.37,2.43,2.41,2.42,2.41 宁夏,1.66,1.86,1.85,2.07,2.04,2.10,2.25,2.28,2.26,2.27,2.32,2.34,2.36,2.39,2.40,2.46②经济高质量发展综合得分:城市,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022 山西,1.70,1.68,1.87,1.81,1.69,1.75,1.87,1.82,1.87,1.88,1.98,1.97,2.03,2.01,2.11,2.09 内蒙古,1.59,1.63,1.66,1.62,1.68,1.68,1.80,1.88,1.90,1.87,1.92,1.96,2.02,2.11,2.19,2.19 山东,1.83,1.89,1.97,1.99,1.96,2.01,2.15,2.17,2.20,2.19,2.23,2.22,2.33,2.25,2.41,2.39 河南,1.67,1.62,1.66,1.65,1.66,1.72,1.73,1.82,1.90,1.84,1.95,1.94,1.96,2.10,2.19,2.28 四川,1.70,1.68,1.87,1.81,1.69,1.75,1.87,1.82,1.87,1.88,1.98,1.97,2.03,2.01,2.11,2.09 陕西,1.70,1.75,1.84,1.83,1.82,1.88,1.93,1.95,2.04,2.07,2.05,2.07,2.05,2.08,2.13,2.23 甘肃,1.55,1.63,1.74,1.68,1.65,1.78,1.78,1.80,1.81,1.85,1.94,1.94,1.97,1.97,2.00,2.01 青海,1.53,1.54,1.69,1.67,1.60,1.71,1.81,1.82,1.79,1.84,1.87,1.90,1.88,1.97,2.02,2.00 宁夏,1.64,1.65,1.71,1.71,1.66,1.78,1.84,1.93,1.96,1.92,2.04,2.09,2.07,2.07,2.13,2.11。要求输出每个省份每个年份的C、T、D、协调程度值
最新发布
03-21
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值