线性代数部分定理的整理

在学习 《Pattern Recognition and Machine Learning》和 《Linear Algebra and Its Applicaition》过程中,对这两本书上出现的一些定理进行(不完整)整理。

符号约定

  • I I I:与 E E E 一样都代表单位矩阵,这两者在本文中可能会被交替使用
  • L L L:下三角矩阵
  • U U U:上三角矩阵
  • D D D:对角阵
  • Q Q Q:正交阵

对称矩阵的逆仍为对称矩阵(the inverse of a symmetric matrix is also symmetric)

首先,对称矩阵有 A T = A A^T = A AT=A,若该对称矩阵 A A A 可逆,两边求逆可得:
( A T ) − 1 = A − 1 (1) (A^T)^{-1} = A^{-1} \tag{1} (AT)1=A1(1)
由对称矩阵 A A A 可逆,即满足 A A − 1 = E AA^{-1} = E AA1=E,两边转置得:
( A − 1 ) T A T = E (A^{-1})^TA^T = E (A1)TAT=E
故有, ( A − 1 ) T = ( A T ) − 1 (A^{-1})^T = (A^T)^{-1} (A1)T=(AT)1,即转置与求逆的先后顺序可以交替。带入到最开始的公式 ( 1 ) (1) (1) 中即可得证(对称矩阵的逆仍为对称矩阵):
( A − 1 ) T = A − 1 (A^{-1})^T = A^{-1} (A1)T=A1

矩阵的逆唯一

A B = I AB=I AB=I I I I 为单位矩阵),即矩阵 B B B 与矩阵 A A A 互为逆矩阵,并假设存在另一个矩阵 C C C 也为 A A A 的逆矩阵,由矩阵相乘运算满足结合律可得:
B ( A C ) = ( B A ) C ⟶ B I = I C ⟶ B = C B(AC) = (BA)C \quad \longrightarrow \quad BI = IC \quad \longrightarrow \quad B=C B(AC)=(BA)CBI=ICB=C
即得证:矩阵的逆(若存在)是唯一的。

矩阵的 LDU 分解唯一

先假设 A = L 1 D 1 U 1 = L 2 D 2 U 2 A=L_1D_1U_1 =L_2D_2U_2 A=L1D1U1=L2D2U2 成立(即分解不唯一)。

注意,在这里, L L L 是对角线元素均为 1 的下三角矩阵, U U U 是对角线元素均为 1 的上三角矩阵,而 D D D 是对角阵。 L L L D D D U U U 均可逆。

由假设 L 1 D 1 U 1 = L 2 D 2 U 2 L_1D_1U_1 =L_2D_2U_2 L1D1U1=L2D2U2 左乘 L 2 − 1 L_2^{-1} L21,右乘 U 1 − 1 D 1 − 1 U_1^{-1}D_1^{-1} U11D11 得:
L 2 − 1 L 1 = D 2 U 2 U 1 − 1 D 1 − 1 (2) L_2^{-1}L_1 = D_2U_2U_1^{-1}D_1^{-1} \tag{2} L21L1=D2U2U11D11(2)
由于:

  • (上)下三角矩阵相乘得到矩阵仍为(上)下三角矩阵。设 A A A B B B 均为下三角矩阵,对于 A B AB AB,我们可以把 A A A 看作是在 B B B 上进行多次初等行变换(不包括行交换)对应的矩阵,而初等行变换(不包括行交换)并不会改变下三角矩阵对角线以上的元素。所以, A B AB AB 仍为下三角矩阵。而且,若 A A A 对角线元素均为 1,则 A B AB AB 对角线上的元素与 B B B 一致。
  • (上)下三角矩阵的逆矩阵(若存在)仍为(上)下三角矩阵。设 A A A B B B 互为逆矩阵(即 A B = E AB=E AB=E),且 B B B 为下三角矩阵,用上面那种思路,把 A A A 看作将 B B B 转换至单位矩阵所需的所有初等行变换对应的矩阵(将下三角矩阵转换成单位矩阵不需要进行行交换),可得 A A A 仍为下三角矩阵。而且,若 A A A 对角线元素均为 1,则 B B B 对角线上的元素与 B B B 一致,也均为 1。

所以, L 2 − 1 L 1 L_2^{-1}L_1 L21L1 为下三角矩阵, D 2 U 2 U 1 − 1 D 1 − 1 D_2U_2U_1^{-1}D_1^{-1} D2U2U11D11 为上三角矩阵。这时,若要保证两者相等,两者都必须是对角阵,又因为 L 2 − 1 L 1 L_2^{-1}L_1 L21L1 对角线元素均为 1(与 L 1 L_1 L1一致 ),所以, L 2 − 1 L 1 L_2^{-1}L_1 L21L1 是单位矩阵,故得: L 2 = L 1 L_2=L_1 L2=L1.

然后,我们将 D D D U U U 分别移至等号两端: D 2 − 1 D 1 = U 2 U 1 − 1 D_2^{-1}D_1 =U_2U_1^{-1} D21D1=U2U11.

由于 D 2 − 1 D 1 D_2^{-1}D_1 D21D1 为对角阵,所以 U 2 U 1 − 1 U_2U_1^{-1} U2U11 同样为对角阵,又因为 U 2 U 1 − 1 U_2U_1^{-1} U2U11 的对角线元素均为 1(与 U 1 − 1 U_1^{-1} U11一致 ),可得 D 2 − 1 D 1 = U 2 U 1 − 1 = E D_2^{-1}D_1 =U_2U_1^{-1}=E D21D1=U2U11=E. 即:
D 2 = D 1 U 2 = U 1 \begin{aligned} D_2 &= D_1 \\ U_2 &= U_1 \end{aligned} D2U2=D1=U1
综上可知假设不成立,即矩阵的 LDU 分解是唯一的。

A T A x = 0 A^TAx=0 ATAx=0 A x = 0 Ax=0 Ax=0 同解

也就是 A T A A^TA ATA A A A 有着相同的零空间(null space)。如果 A x = 0 Ax = 0 Ax=0,显然有 A T A x = 0 A^TAx = 0 ATAx=0;而当 A T A x = 0 A^TAx = 0 ATAx=0 时,有 x T A T A x = 0 x^TA^TAx = 0 xTATAx=0,即 ∥ A x ∥ 2 = 0 \lVert Ax \rVert^2=0 Ax2=0,则有 A x = 0 Ax = 0 Ax=0, 所以得证: A T A x = 0 A^TAx=0 ATAx=0 A x = 0 Ax=0 Ax=0 同解。

当矩阵 A 列满秩时, A T A A^TA ATA 可逆

根据上面已证的 A T A x = 0 A^TAx=0 ATAx=0 A x = 0 Ax=0 Ax=0 同解,当 A A A 的列满秩时( A x = 0 Ax = 0 Ax=0 只有零解), A T A x = 0 A^TAx=0 ATAx=0 也只有零解,所以 A T A A^TA ATA 也是列满秩的,又由于 A T A A^TA ATA 是对称的,所以它也是行满秩的,故此时 A T A A^TA ATA 是可逆的。同理,当 A A A 行满秩时, A A T AA^T AAT 是可逆的。

A T A A^TA ATA 的秩等于 A A A 的秩

根据上面已证实的 A T A x = 0 A^TAx=0 ATAx=0 A x = 0 Ax=0 Ax=0 同解,可知 A T A A^TA ATA A A A 有着相同的零空间,那么 A T A A^TA ATA 的秩就必须等于 A A A 的秩。又因为 A A T = ( A T A ) T AA^T = (A^TA)^T AAT=(ATA)T,所以 A A T AA^T AAT 的秩与 A T A A^TA ATA 一样,都等于 A A A 的秩。

一个向量乘以一个正交矩阵后的长度与原先不变

假设有一个正交矩阵 Q Q Q Q T Q = E Q^TQ=E QTQ=E)和一个向量 x x x,则有:
∥ Q x ∥ 2 = ( Q x ) T ( Q x ) = x T Q T Q x = x T x = ∥ x ∥ 2 \lVert Qx \rVert ^2 = (Qx)^T(Qx) = x^TQ^TQx = x^Tx = \lVert x \rVert^2 Qx2=(Qx)T(Qx)=xTQTQx=xTx=x2
∥ Q x ∥ \lVert Qx \rVert Qx ∥ x ∥ \lVert x \rVert x 均大于等于 0,所以有 ∥ Q x ∥ = ∥ x ∥ \lVert Qx \rVert=\lVert x \rVert Qx=x,即 Q x Qx Qx 的长度等于 x x x 的长度。

参考源

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值