线性代数(三十五) : 谱定理

谱定理是线性代数中很重要很基础的定理,并为以后的特征值分解做准备

1 谱定理

 设A是nxn复矩阵,则复数域上任意向量都可以写成A的特征向量之和,其中特征向量可以是广义特征向量.

谱定理的证明需要以下引理或推论

2 引理1

 设p,q是两个复系数多项式,并且没有公共零点,则存在另外两个

多项式a,b使得:

 

证明:

 以下证明只是简述,并不是严格证明:

假设形如qp+bq次数最低的非零多项式记做d,易证d整除p和q

又根据p,q无公共零点,因此易证d是常数,假设:

 

即证明了该引理.

3 引理2

 设p,q为无公共零点的多项式,A是复数域上的方阵,则:

 

即任意x属于Npq可以唯一的分解

证明:

 对推论1中的自变量为A有:

 

等式两端同时作用在x上得到:

 

由于同一矩阵的多项式可交换,并且x属于p(A)q(A)的零空间:

 

因此证明了推论

(并没有证明分解的唯一性,,,)

4 推论:

 设p1,p2,...,pk是一簇多项式,任意两个无公共零点N1,...,Nk分别是他们的零空间,则:

 

该推论的证明略

5 证明谱定理

任取向量x,则n+1个向量x,Ax,...,A^nx必定线性相关,即存在次数不大于n的多项式p:

 

对p进行分解:

 

其中Rj是p的根,Mj是Rj的重数,如果Rj不是A的特征值则A-RjI可逆.

将可逆因子移到前端,剩下的Rj是A的特征值.若记:

 

则(2)式可重写为:

 

显然任意两个Pj无公共零点,则由推论10,x可分解为Npj中向量之和.

由(3)式和广义特征向量定义知任意x属于Npj都是A的广义特征向量,

这样就将x分解为A的广义特征向量之和。定理得证

  • 4
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值