西门子(siemens)读写报文解析

 
  批量读
  TPKT
  03 (固定)
  00 (固定)
  00 37(整体报文总共长度)
  
  ISO 
  02 (固定)
  f0 (固定)
  80 (固定)

  header
  32     (固定)
  01     (固定)
  00 00  (固定)
  00 01  (标识序列号)
  00 26 (读取参数长度) params长度
  00 00

  params
  04(读代码) --1
  03(总共读取个数) --1
  12 0a 10 02 00 0b(数据长度) 00 01(读取个数) 84(DB块代码) 00 00 20(偏移地址) --12
  12 0a 10 02 00 02(数据长度) 00 01(读取个数) 84(DB块代码) 00 00 08(偏移地址) --12
  12 0a 10 02 00 04(数据长度) 00 01(读取个数) 84(DB块代码) 00 0d 20(偏移地址) --12


  批量读数据解析
  TPKT
  03 
  00 
  00 47(总共长度)全部长度
  
  ISO 
  02 (固定)
  f0 (固定)
  80 (固定)
  
  Header
  32 
  03 
  00 00 
  00 00 
  00 02 
  00 32 (数据长度)对应下方Data
  00 (错误)
  00 (错误代码)
  
  Params
  04(读代码)
  03(读取个数) 
  
  Data
  ff 返回代码Success
  04 
  00 08 长度
  03  数据值
  00  filebyte
  
  ff 
  04 
  00 08
  03
  00 --填充字节
  
  ff 
  04 
  01 10
  30 20 31 35 20 20 20 20 20 20 20 00    
  00 00 00 00 14 14 31 32 33 34 35 36 37 38 39 30    
  31 32 33 34 35 36                                  

  批量写
  TPKT
  03 (固定)
  00 (固定)
  00 37(总共长度)全部长度
  
  ISO 
  02 (固定)
  f0 (固定)
  80 (固定)

  header
  32     (固定)
  01     (固定)
  00 00  (固定)
  00 01  (标识序列号)
  00 26 (写入报文参数长度) params长度
  00 00  (数据值 DataLength)

  params
  04(读代码) --1
  03(总共读取个数) --1
  12 0a 10 02(按字节写入/按位写入) 00 0b(数据长度) 00 01(读取个数) 84(DB块代码) 00 00 20(偏移地址) --12
  12 0a 10 02(按字节写入/按位写入) 00 02(数据长度) 00 01(读取个数) 84(DB块代码) 00 00 08(偏移地址) --12
  12 0a 10 02(按字节写入/按位写入) 00 04(数据长度) 00 01(读取个数) 84(DB块代码) 00 0d 20(偏移地址) --12
  

  Data
  00 03    00 01(数据长度)    01 00 (写入数据)
  00 03    00 01(数据长度)    00 00 (写入数据)
  00 04    00 20(数据长度)    44 24 a3 33 (写入数据)                                      

  

### 安装 `torch-cluster` 库 为了在 Python 环境中安装 `torch-cluster` 库,可以根据不同的需求和环境选择合适的方式。 #### 方法一:使用 `-f` 参数指定索引页面 对于特定版本的 PyTorch 和 CUDA 组合,可以通过提供额外的包索引来安装兼容版本的 `torch-cluster`: ```bash pip install --no-index torch-cluster -f https://pytorch-geometric.com/whl/torch-1.12.1+cu113.html [^1] ``` 此命令中的 URL 需要根据实际使用的 PyTorch 版本以及 CUDA 版本来调整。上述例子适用于 PyTorch 1.12.1 和 CUDA 11.3 的组合。 #### 方法二:直接从官方稳定源安装 如果不需要特别指定 PyTorch 或者 CUDA 的版本,则可以直接从 PyPI 上获取最新发布的 `torch-cluster`: ```bash pip install torch-cluster ``` 不过需要注意这种方式可能不会自动处理好所有的依赖关系特别是当涉及到 GPU 支持的时候[^2]。 #### 方法三:下载 `.whl` 文件并本地安装 另一种方式是从网络上找到适合当前系统的预编译 wheel 文件,并通过 pip 来安装它。例如,在 Linux 平台上针对 Python 3.7 及 CUDA 11.3 的情况可如下操作: ```bash # 假设已经下载好了对应的 .whl 文件至当前目录 pip install torch-1.10.1+cu113-cp37-cp37m-linux_x86_64.whl [^3] ``` 这种方法的好处是可以精确控制所安装的具体版本号及其构建参数。 #### 复杂场景下的建议 遇到复杂环境下难以解决的问题时,考虑清理已有的安装尝试记录,重新评估所需的组件版本匹配度,甚至探索其他社区成员分享的成功案例作为参考[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值