一:手写循环神经网络的实现
实验: 手动实现循环神经网络RNN,并从至少一个数据集上进行实验,这里我选取了高速公路传感器数据PEMS04(后面的实验都是用的高速公路传感器数据),主要根据数据集的大小以及特征维度,手动实现循环神经网络,包括输入层、隐藏层、输出层,其中注意的是下一层的输入是本身和上一层的隐藏层的同时输入,最后的RNN的返回值为最后一步的隐藏状态,以及每一步的输出状态。
实验目的: 利用手动实现的循环神经网络RNN,利用高速公路车流量数据集,学习回归模型,使得该模型可以很好的根据历史的车流量数据预测未来车流量。
实验算法和原理: 因为是回归模型,所以使用MSE,这里我在测试集上则分别使用了RMSE、MAE、MAPE,梯度更新使用的是Adam优化器。
数据集处理:
在这里统一说一下车流辆回归数据集的处理操作:读取npz文件,只获取一个传感器的所有数据,然后对其归一化操作,最后划分数据集合的80%、20%分别作为训练集和测试集。
1<