最优化理论(二)拉格朗日乘子法


引入: 优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值(因为最小值与最大值可以很容易转化,即最大值问题可以转化成最小值问题)

一:无约束条件

这是最简单的情况,解决方法通常是函数对变量求导,令求导函数等于0的点可能是极值点。将结果带回原函数进行验证即可。


二:等式约束条件–拉格朗日乘子

2.1拉格朗日乘子法的定义以及推导

在这里插入图片描述
这种方法可以将一个有n个变量与k个约束条件的最优化问题转换为一个解有n + k个变量的方程组的解的问题。这种方法中引入了一个或一组新的未知数,即拉格朗日乘数,又称拉格朗日乘子,或拉氏乘子,它们是在转换后的方程,即约束方程中作为梯度(gradient)的线性组合中各个向量的系数。
在这里插入图片描述
注:上面的拉格朗日乘子的-或+没有关系;并且拉格朗日乘数法所得的极点会包含原问题的所有极值点,但并不保证每个极值点都是原问题的极值点。

在这里插入图片描述
注:绿线标出的是约束g(x,y) = c的点的轨迹。蓝线是f的等高线。箭头表示梯度,和等高线的法线平行。
从上面的图出发:
在这里插入图片描述
注:其实就是约束和方程在某一点相切,此时两者的梯度方向是平行的,相向或者是反向,求出参数,然后带到原方程即可,这里为什么此时的梯度就是原函数的梯度!!
见下面的证明
在这里插入图片描述
注:这里主要利用了全微分的概念,全微分理解见:https://editor.csdn.net/md/?articleId=109603958

2.2一个简单的例子:

在这里插入图片描述


参考链接:https://zh.wikipedia.org/wiki/%E6%8B%89%E6%A0%BC%E6%9C%97%E6%97%A5%E4%B9%98%E6%95%B0
推荐维基百科,讲的很清楚!!

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Studying_swz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值