GOTURN 网络理解

原创 2018年04月17日 13:08:00
GOTURN 网络理解
作者采用完全离线的方式进行训练,然后对目标进行跟踪,将追踪能做到100fps(是指在gtx 680上),当使用泰坦x 时能到160+fps ,数度确实很快,这样的离线训练,以及能在680上实现100fps,在目前,有着一定的商业应用价值。

在以前的深度跟踪的工作中大多数都是不能满足实时性的要求: 在这之前的cnn做到7fps

穿插一下,这篇文章是2016年的,目前深度追踪发展迅速,很多已超越GOTURN网络,(目前大家对于这篇文章评价不是很高,因为kcf在数度上使用cpu训练已经可以达到170+fps的速度):这篇文章的网络类似于simese 网路:(后续续继续看simesefc这篇文章:来自牛津Luca Bertinetto大佬的SiameseFC tracker):

先贴网络:

        转正题:

            下面介绍一下GOTURN net 的输入与输出:

可视化整体网络结构:

输入1:当前帧图片,进行crop 得到带目标的中心的区域,
输入2: 输入当前帧,进行crop 的到search region :
在第Previous frame帧中,假设目标所在位置为(cx,cy),其大小为(w,h),则提取一块大小为(2w,2h)的图像块输入到CNN中。 为什么要选择2 ,这就是作者提出的新思想哈(根据目标框的拉普拉斯分布)
在第当前帧中,也以(cx,cy)为中心,提取大小为(2w,2h)的图像块,输入到CNN中
通过输入前后两幅图像
输出目标的窗口(左上角坐标和右下角坐标)。
卷积层网络结构的作用:
卷积层是采用的5层结构(这里的5层结构是参照了CaffeNet里面的结构,其中卷积层的激励函数都采用了relu激励函数,部分卷积层后面添加了池化层)(卷积层,用于提取目标区域和搜索区域的特征 ),并在imagenet上fine-tue进行预训练。
而全连接层则是由3层,每层4096个节点,各层之间采用dropout(补充:理解dropout)和relu激励函数,以防过拟合和梯度消失。(全连接层,用于比较目标特征和搜索区域特征,输出新的目标位置.)输出则是一个四维向量,分别是跟踪窗口左上角和右下角坐标.
整个算法实现的框架如上图:作者将上一帧的目标和当前帧的搜索区域同时经过CNN的卷积层(Conv Layers),然后将卷积层的输出通过全连接层(Fully-Connected Layers),用于回归(regression)当前帧目标的位置。
文中训练时loss function 采用的是L1-loss
损失函数则是采用的L1-Loss的方式

作者给出几种训练数据的俄对比表格:


本文的特殊点:

目前没有人去研究目标位置与尺度的关系,但是作者通过groundtruth进行研究,前帧目标的位置和尺度变化与上一帧的目标存在着某种分布关系,符合拉普拉斯分布:对于具体的拉普拉斯分布的介绍在论文后有详细的介绍:

在看完论文后,下一篇有介绍代码的实现:


版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_37553011/article/details/79973201

论文笔记(一) GOTURN

一.算法原理        GOTURN(Generic Object Tracking Using Regression Networks)这个算法没有过多的图像处理过程,主要是利用了卷积神经网络的...
  • nightmare_dimple
  • nightmare_dimple
  • 2017-07-03 14:40:30
  • 984

GOTURN 100fps 深度回归网络跟踪

GOTURN 100fps 深度回归网络跟踪首先贴上原文地址 Learning to Track at 100 FPS with Deep Regression Networks,一作是斯坦福大学的D...
  • wangss9566
  • wangss9566
  • 2016-08-11 11:14:42
  • 3982

安装Goturn过程

最近读了Goturn的文章,决定重现一下。 首先正常安装,发现报错。 原来是要cmake安装caffe。 于是用cmake重新安装caffe。 cd caffe 报错does not appear ...
  • anfly007
  • anfly007
  • 2017-03-01 15:08:36
  • 477

GOTURN算法在ubuntu14.04+only_cpu环境下编译运行

 安装cmake sudo apt-getinstall cmake 安装caffe http://caffe.berkeleyvision.org/ins...
  • silenmm
  • silenmm
  • 2017-12-05 16:32:49
  • 295

GOTURN——Learning to Track at 100 FPS with Deep Regression Networks

文章的题目叫:《Learning to Track at 100 FPS with Deep Regression Networks》 算法简称:GOTURN(Generic Object Trac...
  • autocyz
  • autocyz
  • 2016-09-24 10:36:48
  • 10653

GOTURN 算法

文章的题目叫:《Learning to Track at 100 FPS with Deep Regression Networks》  算法简称:GOTURN(Generic Object Tra...
  • BBZZ2
  • BBZZ2
  • 2017-05-12 11:26:17
  • 1178

GOTURN源码分析&阅读笔记

这个礼拜把GOTURN源码扫了一遍,特此总结一下。先附上文章以及源码地址: Abstract:http://davheld.github.io/GOTURN/GOTURN.html Github源码:...
  • u014266895
  • u014266895
  • 2017-03-16 15:22:18
  • 1008

GOTURN-(达到100FPS的深度学习跟踪算法代码)

本代码是基予caffe的linux的, 安装好caffe之后需要编译GOTURN代码,在编译过程中会出现如下错误: fatal error: caffe/proto/caffe.pb.h: No...
  • u012258999
  • u012258999
  • 2017-02-20 05:37:14
  • 1227

目标跟踪--GOTURN 100fps

先附上论文的链接 点击https://arxiv.org/abs/1604.01802打开链接 GOTURN: Generic Object Tracking Using Regression Net...
  • zwlq1314521
  • zwlq1314521
  • 2017-03-23 16:35:30
  • 1884

GOTURN(Generic Object Tracking Using Regression Networks ECCV2016)

This tracker is able to track objects at 100 fps. This real-time speed is due to two factors. Firs...
  • u012235274
  • u012235274
  • 2016-08-18 11:37:15
  • 1064
收藏助手
不良信息举报
您举报文章:GOTURN 网络理解
举报原因:
原因补充:

(最多只允许输入30个字)