深度学习在医学领域

本文探讨了深度学习在医学领域的应用,特别是医学影像分析,包括图像分割、配准、病灶检测和辅助诊断。深度学习模型如CNN、RNN和U-net在医学影像处理中展现出潜力,但在数据缺乏、标记成本高和领域迁移等问题上仍面临挑战。此外,还介绍了深度学习在脑部疾病诊断中的具体应用案例。
摘要由CSDN通过智能技术生成

医学领域

医学影像的特点

  1. 高依赖成像设备和成像环境;图像种类多差异,很难融合
  2. 图像像素大,信噪比低且图像分辨率低
  3. 生物个体存在差异性、易变性。

医学病症大致分类

从人类结构来分类,脑(脑血管病,神经’性疾病 阿尔茨海默病,帕金森病,癫痛] ,精神疾病 拥郁症,精神分裂症],脑瘤等)、胸(心脏疾病,肺结节/肺癌,乳腺结节/乳腺癌等)、颈(颈动脉检测,甲状腺癌等)、眼(糖尿病眼病等)、腹部(胃癌)、男性盆骨(前列腺癌等)、女性盆骨(子宫颈癌等)。
脑部疾病是颅内组织器官(脑膜血管、大脑、小脑、脑干、颅神经等)的炎症、血管病、肿瘤、变性、畸形、遗传病、免疫性疾病、营养代谢性疾病、中毒、外伤、寄生虫病等的总称。胸部疾病主要分布在肺、乳腺、食管、气管、支气管等部位。
腹部包括肝、腆、脾、肾等多个器官,腹部疾病也主要集中在这些器官的损伤上。常见的腹部疾病包括:肝癌、肝炎、前列腺癌、前列腺炎、急性阑尾炎、子宫颈癌等。
常见的眼科疾病有:中心浆液性视网膜病变、干眼症、交感性眼炎、夜盲症、失明眼部结构、弱视、散光、沙眼、白内障、糖尿病视网膜病变、结膜炎、老花眼、色盲、虹膜异色症、视网膜色素变性、视网膜中央动脉阻塞、视网膜脱落、近视、远视、针眼、雪盲症、震粒肿、青光眼、飞蚊症等

深度学习在医学领域的应用

深度学习应用在医学上的问题

  1. 深度神经网络可以被有效地用在医学任务上吗?
  2. 数据的缺乏,数据的标记成本太高,transfer learning和 fine-tuning被提出来,但是从一般意象到医学领域的迁移学习是否相关?
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值