机器学习笔记(9)优化Optimization与正则化Regularization

Optimization

GD&SGD

我觉得算法的流程还是应该放在这里,时常回忆

学习率

最近的几次kaggle比赛学习率在开始阶段选择的都不是很理想

Momentum、Nesterov Momentum、AdaGrad、RMSprop、Adam、AdaDelta

这些中常用的就是Momentum、RMSprop、Adam

优化策略:Batch Normalization

BN的作用:minibatch每次随机取值都不同,为保证每一次梯度下降的稳定,对每个批次的样本依靠均值和方差进行归一化。
BN在训练和测试时的差别:BN训练时根据每一个批次计算并都记录下来,推理时因为参数都已经固定了下来,把这些均值和方差做平均(就当做全局参数而不是在每个批次上计算出来的了)即可。

优化策略:初始化

预训练

意思是预训练可以使容易优化

 

Regularization

正则化就是去过拟合

范数的方法

首先说起正则化的根本目的是去除过拟合,范数的方法本质上是为损失函数加入惩罚项,L1是加一个权重参数的绝对值,L2是加一个权重参数平方和。L1可表示为一个菱形,L2可表示为一个圆,也就是说L1可以可以更容易得到稀疏解也可以说更容易进行特征的选择,L2的优势是鲁棒性更强。

集成方法完成正则化

这部分在之前的集成算法中提到过,这里就不多说了。

数据增强

但在Kaggle比赛中,数据增强并不一定越多越好,需要注意使用。

早停

很简单却实用的技巧

Dropout

这个几乎是必用了

K交叉验证

Kaggle的必用杀器

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白 AI 日记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值