03|缩放算法:如何高质量地缩放图像?

本文详细介绍了图像缩放算法,包括缩放原理、应用场景,重点讨论了最近邻、双线性和双三次插值算法的原理、优缺点及实例。通过实例演示,展示了不同插值方法在图像放大和缩小过程中的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天,我们一起来聊聊图像的缩放算法。图像的缩放算法在我们的日常生活中使用非常频繁,只是可能你没有留意到。举个例子,你使用网页或者播放器看电影的时候,经常会开启全屏或者退出全屏,电影的播放画面就会变大,或者变小。这个过程里面就会用到图像的缩放算法。

事实上,只要视频的原始分辨率和播放窗口的大小不一致,就需要通过缩放处理来使得视频画面适应窗口的大小。比如说,电影分辨率是 1080P,播放器的窗口大小是 720P,则需要将电影画面从 1080P 缩小到 720P 再播放。如果你点击全屏播放,播放窗口变成了 4K,则需要将电影画面做放大处理,即放大到 4K 之后再播放。这就是一个非常典型的图像缩放的例子。

在视频开发的过程中,图像的缩放就更多了。下面我列举 3 种用到图像缩放的情形:

情形 1:播放窗口与原始图像分辨率不匹配的时候需要缩放。这和我刚才举的例子是一样的情况。

情形 2:我们在线观看视频时会有多种分辨率可以选择,即需要在一个图像分辨率的基础上缩放出多种不同尺寸的图像出来做编码,并保存多个不同分辨率的视频文件。

情形 3:RTC 场景,有的时候我们需要根据网络状况实时调节视频通话的分辨率。这个也是需要缩放算法来完成的。

所以,我们可以看到图像的缩放算法是一个很常用的技术,且它是非常重要的。并且,由于图像的缩放会严重影响我们视觉的主观感受,所以图像缩放算法的选择也是非常重要的。目前图像的缩放算法非常多,其中主要包括最常用的插值算法和目前比较火的 AI 超分算法。

由于目前绝大多数图像的缩放还是通过插值算法来实现的,所以我们今天主要来聊聊插值算法。插值算法有很多种,但是其基本原理都是差不多的。它们都是使用周围已有的像素值通过一定的加权运算得到“插值像素值”。插值算法主要包括:最近邻插值算法(Nearest)、双线性插值算法(Bilinear)、双三次插值算法(BiCubic)等。那么在一一讲解这些插值算法之前,我们不妨先来聊聊缩放算法的基本原理。

缩放的基本原理

前面我们讲过,图像的缩放就是将原图像的已有像素经过加权运算得到目标图像的目标像素

什么意思呢?比如说,我们已有图像是 720P 的分辨率,称之为原图像,我们需要放大到 1080P,我们称这个 1080P 图像是目标图像。目标图像在宽度方向上放大了 1920 / 1280 = 1.5 倍,高度方向上也放大了 1080 / 720 = 1.5 倍。

那怎么通过 720P 的原图像生成 1080P 的目标图像呢?我们先将目标图像的像素位置映射到原图像的对应位置上,然后把通过插值计算得到的原图像对应位置的像素值作为目标图像相应位置的像素值。是不是有点绕?别急,下面我给你举个例子,通过它你就可以更直观地理解这句话的意思了。

比如说,1080P 目标图像中的(0,0)位置就映射到 720P 原图像的(0,0)位置,取原图像(0,0)位置的像素值作为目标图像(0,0)位置的像素值。目标图像的(1,1)位置就映射到原图像中的(0.67, 0.67)位置。最后,通过原图像已有像素插值得到(0.67,0.67)位置的像素值,并将该像素值作为目标图像(1,1)位置的像素值。

现在你知道了图像放大的大体过程,那图像缩小的过程是怎样的呢?

同样的我们以 720P 作为原图像,那么 720P 缩小到目标图像 360P 的过程也是类似于图像放大的过程的,这里通过下图描述一下映射的过程,具体就不重复了。

好了,现在我们再回顾一下图像缩放的过程。

首先是图像放大的过程,对于 1080P 目标图像中的每一个像素点(x,y),我们只需要将它映射到 720P 原图像的(x / 1.5,y / 1.5)位置,通过原图像已有的像素值插值得到(x / 1.5,y / 1.5)的像素值就可以了。我们遍历一下目标图像中的每一个像素点位置,都能找到他们在原图像中的映射位置,并通过插值求出映射位置的像素值,这样就可以得到目标图像了,从而也就达到了放大的目的。

图像缩小的过程也是类似的。对于 360P 目标图像中的每一个像素点(x,y),我们只需要将它映射到 720P 原图像的(x * 2,y * 2)位置,通过原图像已有的像素值插值得到(x * 2,y * 2)的像素值就可以了。

下面我们以更通用的表达式来表达一下缩放过程。

假设原图像的分辨率是 w0 x h0,我们需要缩放到 w1 x h1。那我们只需要将目标图像中的像素位置(x,y)映射到原图像的(x * w0 / w1,y * h0 / h1),再插值得到这个像素值就可以了,这个插值得到的像素值就是目标图像像素点(x,y)的像素值。注意,(x * w0 / w1,y * h0 / h1)绝大多数时候是小数。这就是图像缩放算法原理的通用表达。下面是图像放大和缩小的映射过程的示意图。

三种插值算法

到这里我们已经讲完了图像缩放的基本原理,我们注意到,位置映射过程很简单,主要的工作就是如何通过插值算法得到原图像映射位置的像素值。同时,需要说明一下,图像缩放和插值在 RGB 和 YUV 颜色空间中都可以进行。因此,我们下面不会对颜色空间做区分。接下来,我们就依次介绍一下三种插值算法,看看它们的具体插值原理是怎样的,以及它们的效果又是怎样的。

最近邻插值

我们先来聊聊最简单的最近邻插值算法。顾名思义,最近邻插值就是:

首先,将目标图像中的目标像素位置,映射到原图像的映射位置。

然后,找到原图像中映射位置周围的 4 个像素。

最后,取离映射位置最近的像素点的像素值作为目标像素。

比如说,我们现在要将图像从 720P 放大到 1080P。下面我们给出 1080P 目标图像中 3 个像素点(0,0)、(1,0)和(2,2)的最近邻插值过程。

1.   1080P 图像的(0,0)位置的像素,我们映射到 720P 图像的映射位置就是(0 * 1280 / 1920,0 * 720 / 1080),也就是(0,0)位置,那 1080P 的(0,0)位置的像素值直接取原图像(0,0)像素点的像素值就可以了。

2.   对于 1080P 图像的(1,0)位置的像素,我们映射到 720P 图像就是(1 * 1280 / 1920, 0 * 720 / 1080),也就是(0.67,0)位置的像素,这个像素需要插值得到。使用最近邻插值的话,(0.67,0)周围的 4 个像素分别是(0,0)、(1,0)、(0,1)和(1,1),其中距离(0.67,0)最近的位置很明显是(1,0)位置的像素。因此,我们将原图像中(1,0)位置的像素值赋值给目标图像(1,0)位置的像素点。

3.   对于 1080P 图像的(2,2)位置呢?同样映射到 720P 图像,映射位置是(2 * 1280 / 1920,2 * 720 / 1080),也就是(1.33,1.33)位置,其周围 4 个像素分别是(1,1)、(1,2)、(2,1)和(2,2),很明显(1,1)离(1.33,1.33)位置最近,那我们取原图像(1,1)的像素值赋值给 1080P 图像的(2,2)位置的像素点。

照着这个步骤一个个像素插值下去就可以得到 1080P 的图像了。是不是很简单?这个过程就是通过目标图像的像素位置,按照缩放比例映射到原图像,然后找到原图像中离映射位置最近的像素点,把它的像素值赋值给目标图像的像素就可以了。

最近邻插值有一个明显的缺点,就是它直接使用离插值位置最近的整数位置的像素作为插值像素,这样会导致相邻两个插值像素有很大的概率是相同的。比如说,上面例子中的(1,0)位置和(2,0)位置的像素值是一样的。这样得到的放大图像大概率会出现块状效应,而缩小图像容易出现锯齿。这是最近邻插值的缺点。但是它也有一个优点,就是不需要太多的计算,速度非常的快

双线性插值

介绍完了最近邻插值算法,接下来我们将要介绍双线性插值算法。

双线性插值相比于最近邻插值稍微复杂一些,它也是取待插值像素周围的 4 个像素,不同的是,它需要将这 4 个像素值通过一定的运算得到最后的插值像素。在开始讲双线性插值的原理之前,我们先来看看双线性插值的基础,也就是线性插值的原理。

线性插值是在两个点中间的某一个位置插值得到一个新的值。线性插值认为,这个需要插值得到的点跟这两个已知点都有一定的关系,并且,待插值点与离它近的那个点更相似。因此,线性插值是一种以距离作为权重的插值方式,距离越近权重越大,距离越远权重越小。

比如,如下图所示,已知 (x1,y1) 与 (x2,y2)两个点,需求得 x 对应的 y 值。

通过线性插值方法,y 值的计算公式如下:

双线性插值本质上就是在两个方向上做线性插值。由于图像是两个方向的二维数据,正好适合使用双线性插值算法。下面我们来讲讲双线性插值的具体原理。

双线性插值其实就是三次线性插值的过程,我们先通过两次线性插值得到两个中间值,然后再通过对这两个中间值进行一次插值得到最终的结果。如下图所示:

假设我们要插值求的点是 p 点,其坐标为 (x,y)。已知周围 4 个像素分别是 a、b、c、d。我们先通过 a 和 b 水平线性插值求得 m,再通过 c、d 水平插值求得 n。有了 m 和 n 之后,再通过 m、n 垂直插值求得 p 点的像素值。计算过程如下:

我们还是以 720P 放大到 1080P 为例,那么 1080P 图像中的目标像素点(2,2)的双线性插值过程是怎么样的呢?

首先,将目标像素点(2,2)映射到原图像的(1.33,1.33)位置,对应下面图中的点p。找到(1.33,1.33)周围的 4 个像素(1,1)、(2,1)、(1,2)和(2,2),分别对应图中的点a、b、c和d。

先通过这 4 个像素插值得到中间像素 m 和 n 的像素值。m 和 n 的坐标分别为(1.33,1)和(1.33,2)。通过上面的公式可以求得点 p(1.33,1.33)的像素值是:

插值求得(1.33,1.33)的值之后,将其赋值给 1080P 目标图像的(2,2)位置的像素点就可以了。这就是双线性插值的过程。

双线性插值相比最近邻插值运算要多一些,因此运行时间要长一些,但是相比而言,插值之后图像效果会好于最近邻插值

双三次插值

下面我们接着来看一种效果相比双线性插值更好一些的插值算法,就是双三次插值算法,也叫 BiCubic 插值。

在最近邻插值算法中,我们选择待插值像素周围的 4 个像素,并取离待插值像素位置最近的像素点权重为 1,其余 3 个点权重为 0。在双线性插值算法中,同样选择待插值像素周围的 4 个像素,并且每个像素以距离作为权重,距离越近权重越大,距离越远权重越小。

双三次插值算法的基本原理同前两种插值算法差不多,不同的是:

第一,双三次插值选取的是周围的 16 个像素,比前两种插值算法多了 3 倍。

第二,双三次插值算法的周围像素的权重计算是使用一个特殊的 BiCubic 基函数来计算的。

我们先通过这个 BiCubic 基函数计算得到待插值像素周围 16 个像素的权重,然后将 16 个像素加权平均就可以得到最终的待插值像素了。

BiCubic 基函数形式如下:

双三次插值的权重值是分水平和垂直两个方向分别求得的,计算公式是一样的,都是上面这个公式。对于周围 16 个点中的每一个点,其坐标值为(x,y),而目标图像中的目标像素在原图像中的映射坐标为 p(u,v)。那么通过上面公式可以求得其水平权重 W(u - x),垂直权重 W(v - y)。将 W(u - x)乘以 W(v - y)得到最终权重值,然后再用最终权重值乘以该点的像素值,并对 16 个点分别做同样的操作并求和,就得到待插值的像素值了。公式如下:

我们还是以 720P 放大到 1080P 为例,那么 1080P 图像中的目标像素点(2,2)的双三次插值过程是怎么样的呢?

首先,将目标像素点(2,2)映射到原图像的(1.33,1.33)位置,对应下面图中的点p。找到(1.33,1.33)周围的 16 个像素(0,0)、(1,0)一直到(3,3)。

然后,通过 BiCubic 函数求得每一个点的水平和垂直权重。例如,(0,0)、(1,2)和(3,3)点的水平权重和垂直权重计算方式如下:

求出这 16 个点的水平和垂直权重,两者相乘得到最终的权重值,之后每一个像素用自己的最终权重乘以自己的像素值再求和就是(1.33,1.33)的插值像素值了。将它赋值给 1080P 图像的(2,2)像素点就可以了。

我们可以看到,双三次插值需要计算 16 个点的权重再乘以像素值求和,相较于前面的最近邻插值和双线性插值计算量较大,但插值后的图像效果最好。

好了,我们通过下面几幅图像来对比一下这三种插值算法的效果。我们可以看到:最近邻插值得到的图像有很多块效应,效果最差;双线性插值稍好于最近邻插值一些,但是比较模糊;双三次插值效果最好,对比度也明显好于双线性插值。

小结

好了,这节课到这里就要结束了。我们来回顾一下今天的学习内容。

我们主要讨论了图像的缩放算法。图像缩放主要包括两个部分:一个是像素位置映射过程;一个是映射位置像素的插值过程。

1. 像素位置映射过程

对于分辨率为 w0 x h0 的原图像,我们需要缩放到分辨率为 w1 x h1 的目标图像。我们只需要将目标图像的每一个像素点(x,y)映射到原图像的(x * w0 / w1,y * h0 / h1)位置。一般这个映射位置不是一个整数位置。我们需要通过插值算法得到映射位置的像素值,然后将映射位置插值得到的像素值赋值给目标像素就可以了。

2. 映射像素的插值过程

插值过程主要会使用到插值算法。我们今天介绍了最常用的三种插值算法,分别是最近邻插值、双线性插值和双三次插值算法。三种算法的思想和优缺点如下表所示。

<think>好的,我现在需要回答用户关于如何使用Verilog实现图像缩小算法的问题。首先,我得先理解用户的需求。用户提到了参考的引用资料,其中涉及Verilog图像处理、临近缩小算法、双线性插值以及FPGA实现。用户可能希望得到具体的实现步骤或者代码示例。 首先,我应该回顾用户提供的引用内容。引用[1]提到使用临近缩放算法,用BMP图片进行仿真,并提到System Verilog编写的代码。引用[3]和[4]则讨论了双线性插值算法在FPGA上的实现,包括测试文件和MATLAB验证。引用[2]也涉及双线性插值的verilog实现,但主要是放大,而用户关心的是缩小。 接下来,我需要确定图像缩小的基本原理。图像缩小通常包括采样和插值两个主要步骤。常见的算法有最近邻插值、双线性插值等。临近缩小算法可能是指最近邻法,即每个目标像素取源图像中最近的像素值。这种方法简单但可能产生锯齿。而双线性插值则考虑周围四个像素的加权平均,效果更平滑但计算量较大。 然后,考虑Verilog实现的结构。根据引用[1]中的testbench逻辑框图,可能需要模块如数据缓冲、坐标映射、插值计算等。图像处理通常需要处理像素的时序,例如VGA时序,或者从BMP文件中读取像素数据,处理后再输出。因此,在Verilog中,可能需要设计状态机来控制数据流,包括读取输入像素、计算缩小后的坐标、应用插值算法,然后输出处理后的像素。 对于具体实现,临近缩小算法可能较为简单。例如,如果缩小比例为1/2,则每隔一个像素取一个值。但需要考虑如何确定目标像素对应的源像素坐标,这里涉及到坐标映射。在Verilog中,可能需要使用定点数来表示分数坐标,或者通过移位操作来处理整数倍缩小。 双线性插值则需要更多的计算。例如,对于每个目标像素,找到对应的源图像中的四个邻近像素,计算权重,进行加权平均。这涉及到浮点运算,但在FPGA中通常使用定点数来近似。需要设计乘法器和累加器来处理这些计算,同时考虑流水线结构以提高处理速度。 另外,数据缓冲是关键。因为处理一个像素可能需要周围的多个像素,例如双线性插值需要上下左右的像素,因此需要行缓冲(line buffer)来存储前几行的像素数据,以便同时访问多个相邻像素。引用[4]中提到图像数据缓冲单元模块,可能就是用于此目的。 测试方面,引用[3]和[4]提到使用MATLAB辅助验证。这意味着可能需要将处理后的Verilog输出与MATLAB实现的结果对比,确保正确性。同时,处理BMP文件需要能够读取和写入BMP格式,这涉及到文件I/O操作,可能需要在testbench中实现,或者使用系统函数读取文件数据。 代码结构方面,可能需要以下模块: 1. 输入接口:读取原始图像数据,可能通过RAM或FIFO缓冲。 2. 坐标计算模块:根据缩小比例计算目标像素对应的源图像坐标。 3. 插值模块:根据坐标选择或计算像素值(临近法或双线性)。 4. 输出接口:将处理后的像素数据写入输出文件或显示设备。 例如,临近缩小的坐标映射,假设缩小比例为k,则目标坐标(x', y')对应的源坐标为x = x' * k, y = y' * k,取最近的整数坐标。在Verilog中,可能需要用乘法器或移位操作(如果k是2的幂次)来计算,然后取整数部分。 对于双线性插值,需要计算小数部分,进行权重计算。例如,假设源坐标为x = x0 + dx,y = y0 + dy,其中x0和y0是整数部分,dx和dy是小数部分。四个邻近点为(x0,y0), (x0+1,y0), (x0,y0+1), (x0+1,y0+1)。然后计算dx和dy的权重,进行加权平均。这部分需要处理定点数,例如将dx和dy表示为Q格式的定点数,然后进行乘法运算。 在编写Verilog代码时,需要注意时序问题。例如,数据缓冲可能需要几个时钟周期来存储前一行或前一列的数据,确保在需要时能够同时获取多个邻近像素。此外,流水线设计可以提高处理速度,每个步骤分成不同的阶段,每个时钟周期处理一部分操作。 测试方面,testbench需要模拟输入图像数据,可能从BMP文件中读取像素,送入DUT(设计模块),然后将输出写入新的BMP文件。引用[1]和[4]提到使用BMP文件进行仿真,这样可以直观查看结果。同时,MATLAB脚本可以用来生成测试数据或验证输出结果的正确性。 可能的挑战包括处理高精度的计算、资源优化(如减少乘法器数量)、时序控制以及确保数据同步。例如,双线性插值需要多个乘法操作,可能需要优化为并行计算或复用乘法器以减少资源使用。 总结,实现步骤可能包括: 1. 确定缩小算法(如临近法或双线性插值)。 2. 设计坐标映射模块,将目标坐标转换为源坐标。 3. 实现插值计算模块,根据源坐标周围的像素计算目标像素值。 4. 设计数据缓冲模块,存储必要的像素行或列。 5. 编写testbench,读取输入图像,处理并输出结果,与MATLAB结果对比验证。 最后,需要参考用户提供的引用资料,特别是引用[1]和[4]中的临近缩小算法和双线性插值的实现方法,确保回答中包含相关模块的代码示例和结构说明。</think>以下是使用Verilog实现图像缩小算法的步骤说明和代码示例: ### 一、实现原理 图像缩小算法需要完成坐标映射和像素插值两个核心功能。以常用的**临近插值法**为例,目标像素$(x',y')$对应原始图像坐标为: $$x = \frac{x'}{scale}, \quad y = \frac{y'}{scale}$$ 取最近的整数坐标$(round(x),round(y))$作为采样点[^1][^4]。 ### 二、Verilog实现架构 #### 1. 模块划分 ```verilog module image_scaler ( input clk, input [7:0] pixel_in, output [7:0] pixel_out ); // 包含以下子模块 endmodule ``` #### 2. 核心子模块 **(1) 坐标计算模块** ```verilog // 以1/2缩小为例 always @(posedge clk) begin src_x <= dst_x << 1; // 左移1位等效乘2 src_y <= dst_y << 1; end ``` **(2) 数据缓冲单元** 使用双端口RAM构建行缓冲: ```systemverilog logic [7:0] line_buffer [0:1023]; always @(posedge clk) begin if(wr_en) line_buffer[wr_addr] <= pixel_in; if(rd_en) pixel_buf <= line_buffer[rd_addr]; end ``` **(3) 临近插值模块** ```verilog assign pixel_out = line_buffer[src_y][src_x]; // 直接取整坐标像素 ``` ### 三、完整实现示例 ```systemverilog module nearest_scaler ( input clk, input [7:0] din, input valid_in, output [7:0] dout, output valid_out ); reg [10:0] x_cnt, y_cnt; reg [10:0] src_x, src_y; reg [1:0] state; // 坐标映射状态机 always @(posedge clk) begin case(state) 0: if(valid_in) begin src_x <= x_cnt << 1; // 1/2缩小 src_y <= y_cnt << 1; state <= 1; end 1: begin // 读取缓冲数据 state <= 0; x_cnt <= x_cnt + 1; if(x_cnt == 511) y_cnt <= y_cnt + 1; end endcase end // 行缓冲实例化 line_buffer u_buffer( .clk(clk), .wr_addr(src_y), .rd_addr(src_y), .din(din), .dout(dout) ); endmodule ``` ### 四、验证方法 1. **MATLAB预处理**:生成标准缩小图像 2. **Testbench设计**: ```verilog initial begin $readmemh("input_img.hex", rom); // 读取图像数据 #100ns; for(y=0; y<512; y=y+1) for(x=0; x<512; x=x+1) @(posedge clk) din <= rom[y][x]; end ``` 3. **结果对比**:将输出数据导入MATLAB与标准结果进行PSNR计算[^3][^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值