论文阅读ICLR2020《ADAPTIVE STRUCTURAL FINGERPRINTS FOR GRAPH ATTENTION NETWORKS》

论文提出了一种名为Adaptive Structural Fingerprint(ADSF)的模型,用于图注意力网络,解决增加高阶邻居注意力范围可能导致的性能下降和过平滑问题。ADSF通过学习加权接受域来contextualize每个节点,并使用两种方法(高斯函数和随机游走重启动)来重新加权节点的结构指纹。实验表明,结构信息的引入显著提升了模型性能,最佳效果在k=2时取得。未来工作包括研究不同指纹参数、应用到图划分和社区检测,以及扩展方法解决图分类问题。
摘要由CSDN通过智能技术生成

摘要

观点:如何利用注意力机制中的丰富的结构信息
针对问题:增加高阶邻居的注意范围会对性能产生负面影响,过平滑风险
本文提出“Adaptive structure Fingerprints”ADSF模型,充分利用图像注意网络中的拓扑结构。
关键是学习 用一种可加权的、可学习的接受域对每个节点进行 contextualize

确定节点相似性时图的结构

节点结构对节点相似性的影响

  1. 图1a,假设基于内容相似性(A,B)与(A,C)同样相似。但基于结构B比C于A更相似,因为B于A同处于同一个小型的、紧密相连的community,有很大一部分共同邻居
  2. 图1b,A于B不直接相连,在GAT中A和B不直接影响,但A和B共同连接于同一个community,且B连接于community hub,因此A 和 B 直接影响是合理的

Adaptive Structural Fingprients(ADSF)

利用结构信息的关键是构造所谓的“Adaptive Structural Fingprients”,将每个节点置于其局部“receptive field”的上下文 中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值