论文阅读ICLR2020《ADAPTIVE STRUCTURAL FINGERPRINTS FOR GRAPH ATTENTION NETWORKS》
摘要
观点:如何利用注意力机制中的丰富的结构信息
针对问题:增加高阶邻居的注意范围会对性能产生负面影响,过平滑风险
本文提出“Adaptive structure Fingerprints”ADSF模型,充分利用图像注意网络中的拓扑结构。
关键是学习 用一种可加权的、可学习的接受域对每个节点进行 contextualize
确定节点相似性时图的结构
- 图1a,假设基于内容相似性(A,B)与(A,C)同样相似。但基于结构B比C于A更相似,因为B于A同处于同一个小型的、紧密相连的community,有很大一部分共同邻居
- 图1b,A于B不直接相连,在GAT中A和B不直接影响,但A和B共同连接于同一个community,且B连接于community hub,因此A 和 B 直接影响是合理的
Adaptive Structural Fingprients(ADSF)
利用结构信息的关键是构造所谓的“Adaptive Structural Fingprients”,将每个节点置于其局部“receptive field”的上下文 中。