基于MATLAB的天鹰算法优化最小二乘支持向量机AO-LSSVM数据回归预测
在机器学习和数据分析领域,支持向量机(Support Vector Machine, SVM)是一种强大且广泛应用的算法。然而,对于SVM模型的参数选择和训练过程常常需要花费大量时间和精力。为了提高SVM模型的性能和效率,研究人员引入了AO-LSSVM算法,并使用天鹰算法对其进行了优化。
AO-LSSVM(Adaptive Operator Least Squares Support Vector Machine)是一种自适应操作符的最小二乘支持向量机,它通过引入自适应操作符来提高模型的拟合能力和预测性能。天鹰算法则是一种基于仿生学原理的优化算法,它模拟了天鹰捕食的策略,通过群体的智慧搜索全局最优解。
下面将介绍如何使用MATLAB实现基于天鹰算法优化的AO-LSSVM数据回归预测模型。
首先,我们需要准备数据集。假设我们有一个包含N个样本的数据集,每个样本包含M个特征和一个目标值。可以将数据集表示为一个N×(M+1)的矩阵X,其中每一行是一个样本,最后一列是目标值。为了进行回归预测,我们需要将数据集划分成训练集和测试集。
% 数据集准备
data =