问题描述
一个教授逻辑学的教授,有三个学生,而且三个学生均非常聪明! 一天教授给他们出了一个题,教授在每个人脑门上贴了一张纸条并告诉他们,每个人的纸条上都写了一个正整数,且某两个数的和等于第三个!(每个人可以看见另两个数,但看不见自己的) 教授问第一个学生:你能猜出自己的数吗?回答:不能 问第二个,不能 第三个,不能 再问第一个,不能 第二个,不能 第三个:我猜出来了,是144! 教授很满意的笑了。 请问您能猜出另外两个人的数吗? 请问: 第三个人是怎么猜出来的?你是怎么猜出另外两个数的?
问题分析
这是一个非常有趣且具有代表性的逻辑推理问题,但是由此可以发现一个同类推理问题的共有性质以及解法。
初始信息:
①有三个学生。
②每个人都很聪明(意味着问题的答案总是最优的,也即猜出答案的那个人总是理论上应当最先猜出答案的那个人)。
③三个数都是正整数(意味着0是不可取的)。
④其中一个数是另外两个数的和。
⑤每个人可见的信息只有别人额头的数字以及回答的信息(这其中还包含着每次询问过程中对自己头上数字的猜测)。
⑥第六次猜出了自己的答案。
题目中所隐含的信息:
①由于每个人可以看到另外两个人头顶的数字,且其中两个数的和是另外一个数那么本身会对自己头顶的数字有两个猜测,即求和跟求差。
②显然能被三个人猜到的数是具有特殊性的,当然在后面我们会发现任意三个数都具有其特殊性。
③首先一个最特殊的组合就是A=B+B型,这种组合从第一轮就可以猜出这确答案(其中 A B 都代表正整数,因为其中两个数是B,那么A只能取B+B,否则就会等于0,违反了初始信息③)
④最先猜出的一定是最大的那个数。
证明:
1.归纳法
我们对不同的数字组合进行归纳。
当为n=1时,即最初的(A,B,B)组合,结论显然成立。
假设当n=k时结论成立,即(T,P,Q)组合成立,其中T>P>Q。
当n=k+1时,假设M=T+Q,N=T+P;
先证明组合(M,T,P)成立:( 假设组合(M,T,P)询问次序为从右到左)
由于将M替换为P时,这时的组合为(Q,T,P),由前面的假设可知T会首先猜到自己头顶的数字;
对于组合(Q,T,P)来说,由于Q最小,故组合(Q,P-Q,P)中P最先猜出自己头顶的数字;
对于(M,T,P)这个组合来说,假设M这个位置的人对自己头顶的数未知,他对自己的猜测只有Q跟M两种情况,但是如果自己头顶是Q那么T应当先猜出自己头顶的数字,但是事实T并没有猜出来,所以M这个位置的人得知T没有猜出答案时,他就会首先猜到自己头顶的数字,故命题得证。
同理可证明组合(M,T,Q)也成立。
⑤由第四问的归纳证明可得,这个问题的本质是利用前面已经推出的信息,即谁先猜到自己头顶的数字,来作为下一个推测的已知条件,可以把问题转化为一个演绎推理。
问题解答
我们按照猜测出自己头顶的轮数来讨论问题;
有一个重要的信息就是,根据前面的讨论,头顶数字最大的人想要猜出自己头顶的数字跟头顶数字次大的人的回答息息相关,只有当他已知头顶数字次大的人对于自己头顶的数字回答“不知道“时,才能对自己头顶的数字作出判断。(前提条件是三个数不相等)
第一轮猜出自己的答案:(比例的形式表示,后面的括号表示第几次询问猜出答案)
(1:1:2)【1】
(1:2:1)【2】
(2:1:1)【3】
(1:1:2)【1】=> (1:3:2)【2】
(1:1:2)【1】=> (3:1:2)【3】
(1:2:1)【2】=> (3:2:1)【3】
(1:3:2)【2】=> (5:3:2)【3】
第二轮猜出自己的答案:
(1:2:1)【2】=> (1:2:3)【4】
(2:1:1)【3】=> (2:3:1)【5】
(2:1:1)【3】=> (2:1:3)【4】
(1:3:2)【2】=> (1:3:4)【4】
(1:2:3)【4】=> (1:4:3)【5】
(1:2:3)【4】=> (5:2:3)【6】
(3:1:2)【3】=> (3:1:4)【4】
(3:1:2)【3】=> (3:5:2)【5】
(3:2:1)【3】=> (3:2:5)【4】
(3:2:1)【3】=> (3:4:1)【5】
(2:3:1)【5】=> (4:3:1)【6】
(2:1:3)【4】=> (4:1:3)【6】
(2:1:3)【4】=> (2:5:3)【5】
(1:3:4)【4】=> (7:3:4)【6】
(1:3:4)【4】=> (1:5:4)【5】
(1:4:3)【5】=> (7:4:3)【6】
(3:1:4)【4】=> (3:7:4)【5】
(3:1:4)【4】=> (5:1:4)【6】
(3:4:1)【5】=> (5:4:1)【6】
(3:5:2)【5】=> (7:5:2)【6】
(3:2:5)【4】=> (3:8:5)【5】
(3:2:5)【4】=> (7:2:5)【6】
(2:5:3)【5】=> (8:5:3)【6】
(1:5:4)【5】=> (9:5:4)【6】
(3:7:4)【5】=> (11:7:4)【6】
(3:8:5)【5】=> (13:8:5)【6】
由以上推导可得总共有14组可以在第六次猜出答案,但是其满足猜出的数是144 的共有
(4:3:1)(4:1:3)(8:5:3)(9:5:4)四组
结论分析
对于以上例子可知,这一类问题都是找到一个最为特殊的实例,再不断在该实例基础上改变其中一个数,然后在推测时,都将前一种推测结果作为当前推测得出结论的前提。
再回到前面提到的一句话,任意比例的组合都可以在有限步内猜出来,从上面的推理可以知道,每一个新的比例组合都是由前面的组合加和出来的,而最初的两个数为1,由于最小步数为一,故对于所有的自然数都可以由其加和得到。
是否存在通项公式暂时未给。