MNIST数字识别&深层神经

(一)MNIST数字识别代码:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

#常数定义
INPUT_NODE=784
OUTPUT_NODE=10
LAYER1_NODE=500#隐藏层节点数
BATCH_SIZE=100#一个batch中训练数据个数
LEARNING_RATE_BASE=0.8#基础学习率
LEARNING_RATE_DECAY=0.99#学习率的衰减率
REGULARIZATION_RATE=0.0001#描述模型复杂度的正则化项在损失函数中的系数
TRAINING_STEPS=30000
MOVING_AVERAGR_DECAY=0.99#滑动平均衰减率

#计算神经网络的前向传播结果
def infernce(input_tensor,avg_class,weights1,biases1,weights2,biase2):
    if avg_class==None:#如果没有提供滑动平均类
        layer1=tf.nn.relu(tf.matmul(input_tensor,weights1)+biases1)
        return tf.matmul(layer1,weights2)+biase2
    else:#使用avg_cla ss.average()函数计算变量的滑动平均值
        layer1=tf.nn.relu(tf.matmul(input_tensor,avg_class.average(weights1))+avg_class.average(biases1))
        return tf.matmul(layer1,avg_class.average(weights2))+avg_class.average(biase2)

#训练模型
def train(mnist):
#预先声明变量
    x = tf.placeholder(tf.float32,[None,INPUT_NODE],name='x-input')
    y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
    weights1=tf.Variable(tf.truncated_normal([INPUT_NODE,LAYER1_NODE],stddev=0.1))
    biases1 = tf.Variable(tf.constant(0.1,shape=[LAYER1_NODE]))
    weights2=tf.Variable(tf.truncated_normal([LAYER1_NODE,OUTPUT_NODE],stddev=0.1))
    biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE]))
    y=infernce(x,None,weights1,biases1,weights2,biases2)#计算滑动平均的类为NONE时,滑动平均值

    global_step = tf.Variable(0,trainable=False)
    variable_averages=tf.train.ExponentialMovingAverage(MOVING_AVERAGR_DECAY,global_step)#初始化滑动平均类
    variable_averages_op=variable_averages.apply(tf.trainable_variables())#在神经网络的所有参数上使用滑动平均
    average_y=infernce(x,variable_averages,weights1,biases1,weights2,biases2)#计算使用了滑动平均之后的前向传播结果

#正则化损失函数
    cross_entropy=tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y,labels=tf.argmax(y_,1))
    cross_entropy_mean=tf.reduce_mean(cross_entropy)
    regularizer=tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)#声明L2正则化损失函数,函数哦!!!
    regularization=regularizer(weights1)+regularizer(weights2)#计算权重的正则化损失
    loss=cross_entropy_mean+regularization

    learning_rate=tf.train.exponential_decay(
        LEARNING_RATE_BASE,#基础学习率
        global_step,#当前迭代的轮数
        mnist.train.num_examples/BATCH_SIZE,#需要的迭代轮数
        LEARNING_RATE_DECAY)#学习率衰减速率

    train_step=tf.train.GradientDescentOptimizer(learning_rate).minimize(loss,global_step=global_step)
    #一个新函数tf.control_dependencies一次实现多个操作,反向传播更新参数,同时更新每一个参数的滑动平均值!!
    with tf.control_dependencies([train_step,variable_averages_op]):
        train_op=tf.no_op(name='train')

    #检验前向传播结果的正确率
    correct_prediction=tf.equal(tf.argmax(average_y,1),tf.argmax(y_,1))
    accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))#将布尔型数据转化为实数型,然后计算平均值

    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        validate_feed={x:mnist.validation.images,
                       y_:mnist.validation.labels}
        test_feed={x:mnist.test.images,
                   y_:mnist.test.labels}
        for i in range(TRAINING_STEPS): 
            xs,ys=mnist.train.next_batch(BATCH_SIZE)  #产生batch的训练数据并运行
            sess.run(train_op,feed_dict={x:xs,y_:ys})
            if i%1000==0:
                validate_acc=sess.run(accuracy,feed_dict=validate_feed)
                print(i,validate_acc)
        test_acc=sess.run(accuracy,feed_dict=test_feed)
        print(TRAINING_STEPS,test_acc)

#主程序入口
def main(argv=None):
    mnist=input_data.read_data_sets("C:/Users/Administrator/Documents/tensorflow/mnist",one_hot=True)
    train(mnist)

#tf.app.run()函数调用上面的main函数
if __name__=='__main__':
    tf.app.run()

难点:滑动平均模型到底是个啥?

(二)模型持久化

对以上代码进行改进,目标:
1、训练过程中每隔一段时间保存一次模型,以防程序死机;
2、将训练和测试分成两个独立的程序,将前向传播过程抽象成一个单独的库函数,供训练和测试模块的使用。

mnist_inference.py
# -* coding: utf-8 -*-
import tensorflow as tf

INPUT_NODE=784
OUTPUT_NODE=10
LAYER1_NODE=500

def get_weight_Variable(shape,regularizer):
    weights=tf.get_variable("weights",shape,initializer=tf.truncated_normal_initializer(stddev=0.1))#训练时创建,测试时加载
    if regularizer!=None:
        tf.add_to_collection('losses',regularizer(weights))
    return weights

def inference(input_tensor,regularizer):
    with tf.variable_scope('layer1'):
        weights=get_weight_Variable([INPUT_NODE,LAYER1_NODE],regularizer)
        biases=tf.get_variable("biases",[LAYER1_NODE],initializer=tf.constant_initializer(0.0))
        layer1=tf.nn.relu(tf.matmul(input_tensor,weights)+biases)

    with tf.variable_scope('layer2'):
        weights=get_weight_Variable([LAYER1_NODE,OUTPUT_NODE],regularizer)
        biases=tf.get_variable("biases",[OUTPUT_NODE],initializer=tf.constant_initializer(0.0))
        layer2 = tf.matmul(layer1, weights) + biases
    return layer2
mnist_train.py
# -* coding: utf-8 -*-
import tensorflow as tf
import os
from tensorflow.examples.tutorials.mnist import input_data
import mnist_inference

#配置神经网络参数
BATCH_SIZE=100
LEARNING_RATE_BASE=0.8
LEARNING_RATE_DECAY=0.99
REGULARIZATION_RATE=0.0001
TRAINING_STEPS=30000
MOVING_AVERAGR_DECAY=0.99
MODEL_SAVE_PATH="C:/Users/Administrator/Documents/tensorflow/mnist/"
MODEL_NAME="MODEL.ckpt"

def train(mnist):
    x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
    y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
    regularizer=tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
    y=mnist_inference.inference(x,regularizer)#直接使用mnnst_inference.py中定义的前向传播过程

    global_step=tf.Variable(0,trainable=False)
    variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGR_DECAY, global_step)  # 初始化滑动平均类
    variable_averages_op = variable_averages.apply(tf.trainable_variables())  # 在神经网络的所有参数上使用滑动平均
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
    cross_entropy_mean = tf.reduce_mean(cross_entropy)
    loss=cross_entropy_mean+tf.add_n(tf.get_collection('losses'))
    learning_rate = tf.train.exponential_decay(
        LEARNING_RATE_BASE,
        global_step,
        mnist.train.num_examples / BATCH_SIZE,
        LEARNING_RATE_DECAY)
    train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
    with tf.control_dependencies([train_step, variable_averages_op]):
        train_op = tf.no_op(name='train')

    #初始化tensorflow持久化类!!!!!!!!!!!
    saver=tf.train.Saver()
    with tf.Session() as sess:
        tf.global_variables_initializer().run()

        for i in range(TRAINING_STEPS):
            xs,ys=mnist.train.next_batch(BATCH_SIZE)
            _,loss_vale,step=sess.run([train_op,loss,global_step],feed_dict={x:xs,y_:ys})
            if i%1000==0:
                print(step,loss_vale)
                saver.save(sess,os.path.join(MODEL_SAVE_PATH,MODEL_NAME),global_step=global_step)#每1000轮保存一次训练好的模型

def main(argv=None):
    mnist=input_data.read_data_sets("C:/Users/Administrator/Documents/tensorflow/mnist",one_hot=True)
    train(mnist)

if __name__=='__main__':
    tf.app.run()
mnist_eval.py
# -* coding: utf-8 -*-
import time
import tensorflow as tf
import os
from tensorflow.examples.tutorials.mnist import input_data
import mnist_inference
import mnist_train#加载以上两个定义的常量和函数

EVAL_INTERVAL_SECS = 10#每10秒加载一次最新的模型,并在测试数据上测试最新模型的正确率

def evaluate(mnist):
    with tf.Graph().as_default() as g:#定义输入输出的格式
        x = tf.placeholder(tf.float32,[None,mnist_inference.INPUT_NODE],name='x-input')
        y_ = tf.placeholder(tf.float32,[None,mnist_inference.OUTPUT_NODE],name='y_output')
        validate_feed = {x:mnist.validation.images,y_:mnist.validation.labels}
        y=mnist_inference.inference(x,None)#正则化损失函数设置为None

        correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(y_,1))#argmax()得到未知样例的类别
        accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

        variable_averages=tf.train.ExponentialMovingAverage(mnist_train.MOVING_AVERAGR_DECAY)#得到变量均值
        variable_to_store=variable_averages.variables_to_restore()#加载模型
        saver=tf.train.Saver(variable_to_store)

        while True:
            with tf.Session() as sess:
                ckpt=tf.train.get_checkpoint_state(mnist_train.MODEL_SAVE_PATH)#此函数通过checkpoint文件自动找到目录中最新模型的文件名
                if ckpt and ckpt.model_checkpoint_path:#加载模型
                    saver.restore(sess,ckpt.model_checkpoint_path)
                    global_step=ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]#通过文件名得到模型保存时迭代的轮数
                    accuracy_score=sess.run(accuracy,feed_dict=validate_feed)
                    print(global_step,accuracy_score)
                else:
                    print('No checkpoint file found')
            time.sleep(EVAL_INTERVAL_SECS)

def main(argv=None):
    mnist=input_data.read_data_sets("C:/Users/Administrator/Documents/tensorflow/mnist",one_hot=True)
    evaluate(mnist)

if __name__=='__main__':
    tf.app.run()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值