第三章:微分中值定理与导数的应用
微分中值定理主要考证明,导数的应用考计算,中值定理的证明一定要画图分析。
函数和导数的关系
- 一阶导数和函数的关系(Lagrange): f ( b ) = f ( a ) + f ′ ( ξ ) ( b − a ) f(b) = f(a)+f^{'}(\xi)(b-a) f(b)=f(a)+f′(ξ)(b−a), ξ ∈ ( a , b ) \xi \in (a,b) ξ∈(a,b)
- 导数和函数的关系(Taylor): f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + … … + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + o [ ( x − x 0 ) n ] f(x) = f(x_0)+f^{'}(x_0)(x-x_0)+\frac{f^{''}(x_0)}{2!}(x-x_0)^2+……+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^{n}+o[(x-x_0)^n] f(x)=f(x0)+f′(x0)(x−x0)+2!f′′(x0)(x−x0)2+……+n!f(n)(x0)(x−x0)n+o[(x−x0)n]
- 函数的性质是难点,要画图分析。
第一节:中值定理
基本概念
- 费马引理: y = f ( x ) y =f(x) y=f(x)可导,在 x 0 x_0 x0的去心邻域内, f ( x ) > f ( x 0 ) f(x)>f(x_0) f(x)>f(x0)或 f ( x ) < f ( x 0 ) f(x)<f(x_0) f(x)<f(x0),则 f ′ ( x 0 ) = 0 f^{'}(x_0) = 0 f′(x0)=0,换句话说就是可导函数的极值点就是驻点(导数为0的点)
重要公式
- ( l n s i n x ) ′ = c o t x (lnsinx)^{'} = cotx (lnsinx)′=cotx
重要性质
-
罗尔定理(Rolle)定理: y = f ( x ) y = f(x) y=f(x)在 [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导且 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b),则 ∃ ξ ∈ ( a , b ) \exist \xi \in (a,b) ∃ξ∈(a,b)使得 f ′ ( ξ ) = 0 f^{'}(\xi) = 0 f′(ξ)=0
-
拉格朗日(Lagrange)中值定理: y = f ( x ) y = f(x) y=f(x)在 [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导,则 ∃ ξ ∈ ( a , b ) \exist \xi \in (a,b) ∃ξ∈(a,b),使得 f ′ ( ξ ) = f ( b ) − f ( a ) b − a f^{'}(\xi) = \frac{f(b)-f(a)}{b-a} f′(ξ)=b−af(b)−f(a)
- 等价形式
- f ( b ) − f ( a ) = ( a − b ) f ′ ( ξ ) , ξ ∈ ( a , b ) f(b)-f(a) = (a-b)f^{'}(\xi),\xi\in(a,b) f(b)−f(a)=(a−b)f′(ξ),ξ∈(a,b)
- f ( b ) − f ( a ) = ( b − a ) f ′ ( a + θ ( b − a ) ) , θ ∈ ( 0 , 1 ) f(b)-f(a) = (b-a)f^{'}(a+\theta(b-a)),\theta \in(0,1) f(b)−f(a)=(b−a)f′(a+θ(b−a)),θ∈(0,1)
- 推论:若函数 f ( x ) f(x) f(x)在区间 I I I上满足 f ′ ( x ) ≡ 0 f^{'}(x) \equiv 0 f′(x)≡0,则 f ( x ) f(x) f(x)在 I I I上必为常数
- 应用:该定理反映了导数值和函数值的关系。
- 等价形式
-
柯西中值定理: f ( x ) f(x) f(x)以及 F ( x ) F(x) F(x)在 ( a , b ) (a,b) (a,b)内可导,在 ( a , b ) (a,b) (a,b)内 F ′ ( x ) ≠ 0 F^{'}(x) \neq 0 F′(x)=0,则 ∃ ξ ∈ ( a , b ) \exist \xi \in(a,b) ∃ξ∈(a,b),使得 f ( b ) − f ( a ) F ( b ) − F ( a ) = f ′ ( ξ ) F ′ ( ξ ) \frac{f(b)-f(a)}{F(b)-F(a)} = \frac{f^{'}(\xi)}{F^{'}(\xi)} F(b)−F(a)f(b)−f(a)=F′(ξ)f′(ξ)
-
三种中值定理的关系
-
结论中带有 ξ , f ( a ) , f ( b ) \xi ,f(a),f(b) ξ,f(a),f(b),且 ξ \xi ξ与 f ( a ) , f ( b ) f(a),f(b) f(a),f(b)可分离,使用这两种方法,Cauchy,Lagrange
-
结论中只有 ξ \xi ξ,用Rolle
-
结论中结论中带有 ξ , f ( a ) , f ( b ) \xi ,f(a),f(b) ξ,f(a),f(b),且 ξ \xi ξ与 f ( a ) , f ( b ) f(a),f(b) f(a),f(b)不可分,用Rolle
-
解题思路
-
罗尔定理的3个凑 F ( x ) F(x) F(x)的方法方法
- 凑微法:就是使用导数四则运算的逆运算凑,是最基本的方法,不过要特别注意一种出现跨度为2阶的导数,要考虑添加一些项,例如 f ( ξ ) g ′ ′ ( ξ ) − f ′ ′ ( ξ ) g ( ξ ) = 0 f(\xi) g^{''}(\xi) -f^{''}(\xi)g(\xi) = 0 f(ξ)g′′(ξ)−f′′(ξ)g(ξ)=0可以添加一些带 f ′ ( ξ ) f^{'}(\xi) f′(ξ)的过渡项,变为 [ f ( ξ ) g ′ ′ ( ξ ) + f ′ ( ξ ) g ′ ( ξ ) ] − [ f ′ ′ ( ξ ) g ( ξ ) − f ′ ( ξ ) g ′ ( ξ ) ] [f(\xi)g^{''}(\xi)+f^{'}(\xi)g^{'}(\xi)] -[f^{''}(\xi)g(\xi)-f^{'}(\xi)g^{'}(\xi)] [f(ξ)g′′(ξ)+f′(ξ)g′(ξ)]−[f′′(ξ)g(ξ)−f′(ξ)g′(ξ)],之后就可以利用分组构造法来做了。
- 还原法:把要证结论中所有项移到左边,化成 ( … ξ … ) = 0 (…\xi…)= 0 (…ξ…)=0的形式。之后可以两边同乘或除一个数,来拼凑F(x),如果不好拼凑可以使用还原公式拼凑,还原公式:对于 f ′ ( ξ ) + g ( ξ ) f ( ξ ) = 0 f^{'}(\xi)+g(\xi)f(\xi)=0 f′(ξ)+g(ξ)f(ξ)=0的形式,可以得到 F ( x ) = e ∫ g ( x ) d x f ( x ) F(x) = e^{\int g(x)dx}f(x) F(x)=e∫g(x)dxf(x)
- 分组构造法:
- 适用场景:要证结论有3项或3项以上的场景
- 分组一般分成两组,一组为另一组的导数,化为这种形式: ( ) ′ + k ( ) = 0 ()^{'}+k() = 0 ()′+k()=0,然后将组看成整体,利用还原法求解
- 技巧
- 如果题中什么条件都没给,可以直接取端点,不用考虑使用介质定理,最值,零点定理等。
- 如果一道题有两问,一般第一问的结果会成为第二问的条件
- 例题:
- 设 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)在 [ a , b ] [a,b] [a,b]上二阶可导,且 f ( a ) = f ( b ) = g ( a ) = g ( b ) = 0 f(a)=f(b)=g(a)=g(b)=0 f(a)=f(b)=g(a)=g(b)=0,证明:存在 ξ ∈ ( a , b ) \xi \in(a,b) ξ∈(a,b)使得 f ( ξ ) g ′ ′ ( ξ ) − f ′ ′ ( ξ ) g ( ξ ) = 0 f(\xi)g^{''}(\xi)-f^{''}(\xi)g(\xi) = 0 f(ξ)g′′(ξ)−f′′(ξ)g(ξ)=0
- 设 f ( x ) ∈ C [ 0 , π ] f(x)\in C[0,\pi] f(x)∈C[0,π],且在 ( 0 , π ) (0,\pi) (0,π)内可导,证明至少存在一点 ξ ∈ ( 0 , π ) \xi\in (0,\pi) ξ∈(0,π),使 f ′ ( ξ ) = − f ( ξ ) c o t ξ f^{'}(\xi) = -f(\xi)cot\xi f′(ξ)=−f(ξ)cotξ.
- 设 f ( x ) ∈ C [ 0 , 1 ] f(x)\in C[0,1] f(x)∈C[0,1],且在 ( 0 , 1 ) (0,1) (0,1)内可导, f ( 0 ) = 0 f(0) = 0 f(0)=0, f ( 1 2 ) = 1 f(\frac{1}{2}) = 1 f(21)=1, f ( 1 ) = 1 2 f(1) = \frac{1}{2} f(1)=21.证:
- 存在 c ∈ ( 0 , 1 ) c\in (0,1) c∈(0,1),使得 f ( c ) = c f(c) = c f(c)=c
- 存在 ξ ∈ ( 0 , 1 ) \xi \in (0,1) ξ∈(0,1),使得 f ′ ( ξ ) − 2 f ( ξ ) + 2 ξ = 1 f^{'}(\xi)-2f(\xi)+2\xi = 1 f′(ξ)−2f(ξ)+2ξ=1
-
罗尔定理的使用
- 罗尔定理可以证明的问题:
- 可以证明存在导数等于0的问题, f ′ ( ξ ) = 0 , f ′ ′ ( ξ ) = 0 ⋯ f^{'}(\xi)=0,f^{''}(\xi) = 0\cdots f′(ξ)=0,f′′(ξ)=0⋯
- 证存在 f ′ ( ξ ) = 0 f^{'}(\xi) = 0 f′(ξ)=0:找两个相等的函数值,用Rolle,可以证明存在 F ′ ( ξ ) = 0 F^{'}(\xi) = 0 F′(ξ)=0,例如:要证 g ′ ( x ) = f ′ ( x ) g^{'}(x)=f^{'}(x) g′(x)=f′(x),可以令 F ( x ) = g ( x ) − f ( x ) F(x) = g(x)-f(x) F(x)=g(x)−f(x)
- 证存在 f ′ ′ ( ξ ) = 0 f^{''}(\xi) = 0 f′′(ξ)=0
- 找两个相等的导数,用Rolle
- 找3个相等的函数值,用Rolle,得到 f ′ ( ξ 1 ) = 0 , f ′ ( ξ 2 ) = 0 f^{'}(\xi_1)=0,f^{'}(\xi_2)=0 f′(ξ1)=0,f′(ξ2)=0,再用Rolle
- 可以证明存在导数等于0的问题, f ′ ( ξ ) = 0 , f ′ ′ ( ξ ) = 0 ⋯ f^{'}(\xi)=0,f^{''}(\xi) = 0\cdots f′(ξ)=0,f′′(ξ)=0⋯
- 罗尔定理怎么用:
- 要用罗尔定理需要证明 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b),有以下三个方法:
- 和零点定理结合:出现 f ( a ) ⋅ f ( b ) < 0 f(a)\cdot f(b)<0 f(a)⋅f(b)<0
- 介质+最值:出现 k 1 f ( x 1 ) + k 2 f ( x 2 ) + . . . k_1f(x_1)+k_2f(x_2)+... k1f(x1)+k2f(x2)+...
- 极限的反问:条件中出现极限,一般是给连续函数的一个极限,可以求出 f ( x ) 中的某一点(可能是极限点)的值 f(x)中的某一点(可能是极限点)的值 f(x)中的某一点(可能是极限点)的值,和某一点的导数,已知, lim x → x 0 f ( x ) − A x − x 0 = B \lim\limits_{x\to x_0}\frac{f(x)-A}{x-x_0} = B x→x0limx−x0f(x)−A=B,可得到 f ( x 0 ) f(x_0) f(x0)和 f ′ ( x 0 ) f^{'}(x_0) f′(x0),可以作为条件使用。
- 证明 ξ \xi ξ和 a , b a,b a,b不可分离时的情况,步骤:
- step1:分式化整式(一边等于0的形式)
- step2:凑微分,找 F ( x ) F(x) F(x),用Rolle
- 要用罗尔定理需要证明 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b),有以下三个方法:
- 例题:
- 设 f ( x ) , g ( x ) ∈ C [ a , b ] f(x),g(x)\in C[a,b] f(x),g(x)∈C[a,b],在 ( a , b ) (a,b) (a,b)内可导, g ′ ( x ) ≠ 0 ( a < x < b ) g^{'}(x) \neq 0(a<x<b) g′(x)=0(a<x<b),证明:存在 ξ ∈ ( a , b ) \xi \in(a,b) ξ∈(a,b),使得 f ( ξ ) − f ( a ) g ( b ) − g ( ξ ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(\xi)-f(a)}{g(b)-g(\xi)} = \frac{f^{'}(\xi)}{g^{'}(\xi)} g(b)−g(ξ)f(ξ)−f(a)=g′(ξ)f′(ξ)
- f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]连续, ( a , b ) (a,b) (a,b)二阶可导, f ( a ) = f ( b ) = 0 f(a) = f(b) =0 f(a)=f(b)=0, f + ′ ( a ) ⋅ f − ′ ( b ) > 0 f^{'}_+(a)\cdot f^{'}_-(b)>0 f+′
- 罗尔定理可以证明的问题: