2019 CVPR 刘泓 Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers

该博客探讨了2019年CVPR会议上刘泓关于Transferable Adversarial Training的研究,指出传统对抗学习方法可能会扭曲原始表示。作者提出一种新的对抗训练范式,生成转移性示例以填充源和目标域之间的差距,同时固定原始特征并仅调整分类器。通过联合最小化针对D和C的误差,实现了在无标签目标域上的有效适应。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

20年清华特奖得主刘泓的一篇cvpr,人家20岁就发CCF A了

原来的对抗学习方法通过“拉近”S、T 之间的距离来实现DA,但是作者指出这种做法会distort 原始的representation。所以本文提出额外生成 f s ∗ f_{s*} f

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值