【YOLOV5-5.x 源码讲解】整体项目文件导航

本文详述了YOLOv5开源项目的代码结构与功能,包括各文件的作用,以及在理解和实践中遇到的问题和解决方案。作者分享了自己在YOLOv5基础上的改进,如模型解耦和轻量化,并提供了详细的代码注释版本。同时,文章列举了多个参考资料,便于读者深入学习。
摘要由CSDN通过智能技术生成

前言

这个项目是github的开源项目,YOLOV5:https://github.com/ultralytics/yolov5,目前已经有14.1k个Star 和 4.9k 个Folk了,非常的火。下面我会给大家逐个的文件介绍这个项目中的所有代码,希望能帮到大家。

原本我下的2021年4月12日更新的v5.0版本,整个项目我做了一点点的文件位置的改变,也加了点自己在其他论文中学到的tricks。不过由于yolov5这个版本迭代的速度非常快,我这个代码也并不是和官网下载v5.0的那个版本就一模一样,而且我也参考了一些后面的版本代码,还是稍微改动了一些的,不过总体来说还是差不了太多的。下面我会按文件逐个函数的进行攻破,因为我本人也还是研一,肯定会有很多的不足,希望大家指正!!!

现在是2021-07-23,目标是在一个月内写完,也就是最迟2021-8-23日更完整个项目的所有的代码。

拖几天,还有3个文件!!!

写完了,断断续续写了35天,主要是最近比较忙,好在没拖到开学。希望对大家有些帮助!

注释版全部项目文件已上传至GitHub: yolov5-5.x-annotations.


有几个想法(最近找工作中,所以需要搁浅一段时间,后面会补上这个坑)

  1. 想在yolov5的基础上加一个分支进行分割任务
  2. yolov5 + Circular Smooth Label -> 旋转目标检测
  3. yolov5剪枝轻量化

已实现:

  1. YOLOv5 Head解耦: 【YOLOv5 Head解耦】
  2. yolov5+shufflenetv2轻量化【项目二、蜂巢检测项目】二、模型改进:YOLOv5s-ShuffleNetV2

一、导航

YOLOV5-U

二、尚存在的问题

  1. AWS Inferentia?

    不是很清楚这其中的原理 AWS Inferentia 和 正常的推理公式有什么区别?
    在这里插入图片描述
    更新:亚马逊的一个部署推理使用, 和整体的模型算法关系不大,一般用不太到,不用太关注。

  2. non_max_suppression中的autolabelling是什么?这样子作不就导致最终mAP过高了吗?为什么这么做?
    在这里插入图片描述
    更新:已解决,在general.py的non_max_suppression函数中有详细解释!!!

  3. 计算损失函数置信度损失这一步时为什么要对置信度进行排序???排不排序效果不是一样的吗?
    在这里插入图片描述
    更新:已解决,在loss.py的ComputeLoss类中已经解释清楚!

Reference

  1. Github: https://github.com/ultralytics/yolov5.
  2. Github: https://github.com/Laughing-q/yolov5_annotations.
  3. BiliBili: yolov5讲解.
  4. BiliBili 霹雳吧啦Wz: yolov3讲解.
  5. BiliBili 人工智能打游戏系列课程1:基于深度学习的目标检测算法: yolov3讲解.
  6. CSDN Laughing-q: YOLOV5讲解.
  7. CSDN 幻灵H_Ling: YOLOv5源代码导读.
  8. CSDN 昌山小屋: YOLOV5讲解.
  9. CSDN 恩泽君: (yolo v3)使用自己数据集k-means聚类产生的anchor效果反而变差解决方法.
  10. CSDN TheOldManAndTheSea: 目标检测 YOLOv5 - Sample Assignment.
  11. CSDN 菊头蝙蝠: yolov5–loss.py --v5.0版本-最新代码详细解释-2021-7-1更新.
  12. CSDN 外交官的后花园: YOLO-V3-SPP 训练时正样本筛选源码解析之build_targets.
  13. CSDN guikunchen: yolov5 代码解读 损失函数 loss.py.
  14. CSDN 迷途小书童的Note: YOLOv5的flask部署.
  15. CSDN RainbowSun1102: yolov5代码阅读笔记.
  16. CSDN Activewaste: 【干货】用tensorRT加速yolov5全记录,包含加速前后的数据对比.
  17. CSDN DEEPFELLOW: YOLOv5模型剪枝压缩.
  18. CSDN cv君: 【深入YoloV5(开源)】基于YoloV5的模型优化技术与使用OpenVINO推理实现.
  19. CSDN aabbcccddd01: YOLOv5模型网络结构简单理解及详解anchor设置.
  20. CSDN 技术挖掘者: YOLOv5算法详解.
  21. CSDN 那年当上博士前: 细数YOLOv5在使用过程中自己改动的部分.
  22. CSDN 啥都会一点的老程: 一点就分享系列(实践篇3-上篇)— 修改YOLOV5 之”魔刀小试“+ Trick心得分享+V5精髓部分源码解读.
  23. CSDN 一只歪脖子程序猿: YOLOv5 Android(完结).
  24. CSDN 是否龙磊磊真的一无所有: 目标检测计算mAP,AP,Recall,Precision的计算方式和代码(YOLO和FastRCNN等).
  25. CSDN YY_172: pytorch中加入注意力机制(CBAM),以yolov5为例).
  26. CSDN 菊头蝙蝠: yolov5–v5.0版本(最新)代码解析导航.
  27. CSDN 暮丶凉: YOLOV5源码解读(数据集加载和增强).
  28. CSDN wa1tzy: YOLOv5系列(2)——YOLOv5导出jit,onnx,engine.
  29. CSDN DLANDML: yolo5的改进策略.
  30. CSDN 昌山小屋: 【玩转yolov5】请看代码之自动anchor计算.
  31. CSDN Liaojiajia-2020: 自用代码 | YOLOv5 特征图可视化代码.
  32. CSDN Liaojiajia-2020: 自用代码 | 用Python对视频进行帧切割和帧合并.
  33. CSDN Liaojiajia-2020: YOLOv5代码详解(train.py部分).
  34. CSDN TheOldManAndTheSea: 目标检测 YOLOv5 自定义网络结构.
  35. CSDN 吸欧大王: yolov5深度剖析+源码debug级讲解系列(三)yolov5 head源码解析.
  36. CSDN 昌山小屋: 【玩转yolov5】之anchor匹配策略(build_targets)分析(1).
  37. CSDN BIT可达鸭: 在WEB端部署YOLOv5目标检测(Flask+VUE).
  38. CSDN xingzeng307: YOLOv5结合BiFPN.
  39. CSDN DEEPFELLOW: YOLOv5模型剪枝压缩(2)-YOLOv5模型简介和剪枝层选择.
  40. CSDN Charles.zhang: YOLOv5代码详解(common.py部分).
  41. CSDN a_cheng_: YOLOV5训练自己的数据集(踩坑经验之谈).
  42. CSDN Liaojiajia-2020: YOLOv5代码详解(yolov5l.yaml部分).
  43. CSDN \lambda: YOLOv5s网络结构详解.
Yolov5-6.0是一种目标检测算法,它是基于深度学习的YOLO(You Only Look Once)系列算法的最新版本。下面是对Yolov5-6.0源码的一些解析: 1. 网络结构:Yolov5-6.0采用了一种轻量级的网络结构,主要由一系列的卷积层、池化层和上采样层组成。整个网络结构可以根据输入图像的尺寸进行自适应调整,以适应不同的目标检测任务。 2. 特征提取:Yolov5-6.0使用了一种称为CSPDarknet的主干网络,它基于Darknet53网络进行了改进。CSPDarknet采用了一种跨阶段连接的结构,可以更好地保留图像的细节信息,并且减少了参数量和计算量。 3. 检测头:Yolov5-6.0使用了一种称为YOLOv5Head的检测头,它负责生成目标检测的预测结果。YOLOv5Head包括了一系列的卷积层和全连接层,用于提取特征并生成目标的类别、位置和置信度等信息。 4. 训练和推理:Yolov5-6.0提供了完整的训练和推理代码。在训练过程中,它使用了一种称为YOLOv5Loss的损失函数,用于计算目标检测的损失值,并通过反向传播算法更新网络参数。在推理过程中,Yolov5-6.0可以接受输入图像,并输出目标检测的结果,包括目标的位置、类别和置信度等信息。 总的来说,Yolov5-6.0是一种高效准确的目标检测算法,它通过设计轻量级的网络结构和使用先进的特征提取和检测头模块,实现了在目标检测任务上的优秀性能。
评论 47
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值