综述1 | 弱监督场景下的行人重识别

1. 概念

  • 弱监督:包括无监督场景和半监督场景
  • Re-ID概念:将不同摄像头下相同身份的行人图像进行关联。具体来说,就是用某个查询图像(query image)在一个大的图像数据库(gallery set)中检索和匹配相关图像。
  • Re-ID目标:希望获得具有判别性的特征来区分相同身份和不同身份的行人图像。绝大部分工作都是关注在怎样获取具有判别性的特征上。
  • Re-ID挑战:由于行人图像来自多个不同的摄像头,面临的挑战包括不同摄像头下图像的光照条件、分辨率、视角以及行人姿态等各方面差异。
  • 一个完整的行人重识别系统:应当包括行人检测、行人跟踪和行人重识别技术(person re-identification,简称 Re-ID)这3 个模块。

2. 分类

无监督场景的行人重识别算法,根据其技术类型划分为 5 类:

  • 基于伪标记的方法
  • 基于图像生成的方法
  • 基于实例分类的方法
  • 基于领域自适应的方法
  • 其他方法

半监督场景的行人重识别方法,根据其场景类型划分为 4 类:

  • 少量的人有标记的场景
  • 每一个人有少量标记的场景
  • 基于 tracklet 的学习的场景
  • 摄像头内有标记但摄像头间无标记的场景

在这里插入图片描述

3. 无监督行人重识别

  • 在深度学习时代之前:绝大部分无监督的方法主要借助传统的领域自适应方法来学习共享的模型参数、公共的子空间或字典。这些方法在训练中可以使用有标记的源域数据(source domain)和无标记的目标域数据(target domain)来进行模型参数的学习。除了该设定之外,也有一些方法只使用无标记的数据。

  • 基于伪标记的方法:主要思想是为无标记的数据产生高质量的伪标记来训练和更新神经网络。在无监督行人重识别领域中,该方法已经成为主流的技术路线。该类方法具有思路简单清晰、性能良好的优点,特别是一些基于聚类的伪标记生成方法,可以展现出与有监督学习方法相接近的性能。未来研究方向:该类方法在伪标记生成的准确度以及如何有效利用生成的伪标记等方面仍然存在进一步提升的空间 。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值