同胚和微分流形

1.同胚

同胚的概念是拓扑学中的基本概念,同胚指在说明拓扑结构间的同构关系,在拓扑学中,这是一种最基本的等价关系。

定义1(同胚):如果存在 X X X Y Y Y的双射 f f f,使得 X X X Y Y Y的开集互换,即对于 X X X的任意开集 A A A f ( A ) f(A) f(A) Y Y Y的开集,而对于 Y Y Y的任意开集 B B B f − 1 ( B ) f^{-1}(B) f1(B) X X X的开集,这两个拓扑空间是同构的,这种同构被称作为同胚。在拓扑学中,两个流形,如果可以通过弯曲,延展,剪切(只要最终完全沿着当初剪开的缝隙在重新粘贴起来)等操作把其中的一个变为另一个,则认为两者同胚。

性质1(同胚):两个拓扑空间 { X , T X } \{X,T_X\} {X,TX} { Y , T Y } \{Y,T_Y\} {Y,TY}之间的函数 f : X → Y f:X \rightarrow Y f:XY称为同胚,如果它具有下列的性质:

  • f f f是双射(单射和满射)
  • f f f是连续的
  • 反函数 f f f也是连续的

定理1:为使空间 X X X Y Y Y上的双射 f f f是同胚,必须且只需它是双方连续的,即 f f f f − 1 f^{-1} f1都连续的。

同胚的实例有:

  • R n \mathbb{R}^n Rn中的位移是 R n \mathbb{R}^n Rn R n \mathbb{R}^n Rn上的同胚: x → λ x + a ( λ ) x \rightarrow \lambda x +a (\lambda) xλx+a(λ)
  • R \mathbb{R} R内的单位圆盘 D D D和单位正方形是同胚的
  • 开区间 ( − 1 , 1 ) (−1,1) (1,1)与实直线 R \mathbb{R} R是同胚的。

2.微分流形

 假设 R n \mathbb{R}^n Rn n n n维欧氏空间,点 p ∈ R n p \in \mathbb{R}^n pRn的第 i i i个坐标记为 ( p ) i (p)^i (p)i,即 ( ) i () ^i ()i R n \mathbb{R}^n Rn中的第 i i i个坐标函数。

定义2(微分流形):设 M M M是一个 H a u s d o r f f \mathrm{Hausdorff} Hausdorff拓扑空间,若 M M M的每一个点 p p p都有一个开邻域 U ⊂ M U\subset M UM,使得 U U U n n n维欧氏空间 R n \mathbb{R}^n Rn中的一个开子集是同胚的,则称 M M M是一个 n n n维拓扑流形,简称为 n n n维流形。

定义2中所提到的同胚是 φ : U → φ ( U ) ⊂ R n \varphi:U\rightarrow \varphi(U) \subset \mathbb{R}^n φ:Uφ(U)Rn,其中 φ ( U ) \varphi(U) φ(U) R n \mathbb{R}^n Rn中的开集,则称 ( U , φ ) (U,\varphi) (U,φ)为流形 M M M的一个坐标卡, 并且把象点 φ ( p ) \varphi(p) φ(p) R n \mathbb{R}^n Rn中的坐标 ( φ ( p ) ) i (\varphi(p))^i (φ(p))i称为点 p ∈ U p \in U pU的坐标,记为 x i ( p ) = ( φ ( p ) ) i x^{i}(p)=(\varphi(p))^i xi(p)=(φ(p))i(严格地说,坐标 x i x^i xi依赖于同胚 φ \varphi φ,因此应该记为 x φ i x^i_{\varphi} xφi)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值