微分几何笔记(7) —— 光滑微分流形

从这篇开始讲讲光滑微分流形。

7.1 拓扑流形

第一次学到流形是在尤承业的基础拓扑学讲义中的拓扑流形,也就是具有Hausdorff性质的拓扑,而且 每一点都有一个同胚于欧氏空间 R n 的开邻域 \textbf{每一点都有一个同胚于欧氏空间}\mathbb{R}^n\textbf{的开邻域} 每一点都有一个同胚于欧氏空间Rn的开邻域,并且这个流形的维数顺势定义为 n n n.
 

下面关于流形维数的定义啰嗦几句:
这里的定义,只要认同了(或者已经学过同调群) R m \mathbb{R}^m Rm R n \mathbb{R}^n Rn,当 m ≠ n m\neq n m=n时,不同胚,那流形维数的定义是没有问题的。

但仔细想一想,要是用“ 每一点都有一个同胚于欧氏空间的开领域 \textbf{每一点都有一个同胚于欧氏空间的开领域} 每一点都有一个同胚于欧氏空间的开领域”,这里便需要验证维数的良定义,也就是:是否存在某一点,它既有一个邻域同胚与 R m \mathbb{R}^m Rm又同胚于 R n \mathbb{R}^n Rn,且 m ≠ n m\neq n m=n呢?如果是,情况就会相当糟糕,因为流形的维数定义就会出问题。好在这种情况不会出现,齐震宇老师的课程中开始就提到了,Invariance of domain theorem 确保了我们可以良定义流形的维数。
 

以前学点集拓扑学完之后还不知道在干嘛,现在微分流形是用到挺多拓扑的,大概才意识到拓扑之所以是top,是因为它从开集这个已经简单到不行的结构出发去看我们能得到什么性质。

一般我们考虑的拓扑往往不会太糟糕,往往不止假设Hausdorff, 还假设是第二可数的,Hausdorff保证流形中的开集不会“粘”在一起分不开,从而序列的极限是唯一的。

当然我们也有拓扑流形的例子,分别不是第二可数(不可数个欧氏空间的无交并),或者不是Hausdorff的(取平面中的两条直线 y = ± 1 y=\pm1 y=±1 M M M为商空间:当 x ≠ 0 x\neq 0 x=0时, ( x , 1 ) ∼ ( x , − 1 ) (x,1)\sim(x,-1) (x,1)(x,1),从而 ( 0 , − 1 ) , ( 0 , 1 ) (0,-1),(0,1) (0,1),(0,1)不存在不相交的开邻域)。

要理解第二可数得先理解拓扑基,拓扑基是用来生成拓扑的,比方说度量空间中的有理数中心,有理数半径的开球,可数的拓扑基可以理解为对开集有一个可数的“分解”或者“近似”,可以参见这个回答:
https://math.stackexchange.com/questions/2131530/why-is-important-for-a-manifold-to-have-countable-basis
最近要用到的应该是单位分解定理的证明,到时候会说明 局部紧致+ C 2 C_2 C2+Hausdorff 可以推出仿紧。
 

这样就可以给出一个拓扑流形的定义:

Definition 7.1.1 拓扑流形(Topological manifold)
M M M是一个拓扑空间,如果还满足:
(1) M M M作为拓扑空间是Hausdorff的;
(2) M M M是第二可数的;
(3) M M M局部同胚于 n n n维欧氏空间:对流形上任意一点,存在邻域,同胚于 R n \mathbb{R}^n Rn中的某个开集。

最简单的例子当然是欧氏空间 R n \mathbb{R}^n Rn 自身就是一个n维拓扑流形;再比如说一维圆周 S 1 S^1 S1,可以先去掉北极点,剩下的开区间有一个到 R 1 \mathbb{R}^1 R1 的同胚,再去掉南极点,也有一个到 R 1 \mathbb{R}^1 R1 的同胚,根据定义 S 1 S^1 S1 是一个一维拓扑流形;再比如 S n S^n Sn ;有限维线性空间; 更进一步一般线性群 G L ( n , R ) GL(n,\mathbb{R}) GL(n,R),都是拓扑流形。
 

7.2 微分流形

动机是一件很重要的事,所谓拓扑,是讨论在连续的意义下不变的性质,要是我们不满足于此,比如之前欧氏空间中的曲率,都是需要微分运算的,那还想在流形上进行微积分,就得先引入微分的概念,我们熟悉的只有欧氏空间的微积分,所以得想办法把欧氏空间的微分结构抽象出来,赋给拓扑流形。

根据拓扑流形的定义(3),我们可以在拓扑流形 M M M上取个集合,连同这个集合上规定的同胚映射凑成一对,用 ( U α , φ α ) (U_\alpha,\varphi_\alpha) (Uα,φα) 的形式表示,这就是一个坐标卡(cooridinate chart),因为拓扑流形的每一点都包含在一个邻域 U α U_\alpha Uα 中,所以每个点都包含在至少一个这样的坐标卡中。

我们想说一个定义在流形上的函数是光滑的,可以通过已经有的流形上到欧氏空间的同胚 φ α : U α → R n \varphi_\alpha:U_\alpha\rightarrow \mathbb{R}^n φ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值