基本概念不再介绍,直接进行关键点的总结叙述。
kmeans算法又名k均值算法,K-means算法中的k表示的是聚类为k个簇,means代表取每一个聚类中数据值的均值作为该簇的中心,或者称为质心,即用每一个的类的质心对该簇进行描述。
其算法思想大致为:先从样本集中随机选取 k个样本作为簇中心,并计算所有样本与这 k个“簇中心”的距离,对于每一个样本,将其划分到与其距离最近的“簇中心”所在的簇中,对于新的簇计算各个簇的新的“簇中心”。
根据以上描述,我们大致可以猜测到实现kmeans算法的主要四点:
(1)簇个数 k 的选择
(2)各个样本点到“簇中心”的距离
(3)根据新划分的簇,更新“簇中心”
(4)重复上述2、3过程,直至"簇中心"没有移动
优缺点:
优点:容易实现
缺点:可能收敛到局部最小值,在大规模数据上收敛较慢
四大过程步骤:
Step1.K值的选择
k 的选择一般是按照实际需求进行决定,或在实现算法时直接给定 k 值。
说明&#x