【数据可视化-35】全球太空探索数据集(2000-2025)可视化分析

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907

💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。④ 进群免费赠送写作秘籍一份,助你由写作小白晋升为创作大佬。⑤ 进群赠送CSDN评论防封脚本,送真活跃粉丝,助你提升文章热度。有兴趣的加文末联系方式,备注自己的CSDN昵称,拉你进群,互相学习共同进步。

在这里插入图片描述

【数据可视化-35】🚀 全球太空探索数据集(2000-2025)可视化分析

    • 一、引言
    • 二、数据探索
      • 2.1 数据集介绍
      • 2.2 数据清洗探索
    • 三、单维度特征可视化
      • 3.1 各国太空任务数量
      • 3.2 任务类型分布
      • 3.3 卫星类型分布
      • 3.4 任务预算分布
      • 3.5 任务成功率分布
      • 3.6 环境影响分布
    • 四、各个特征与太空任务关系的可视化
      • 4.1 年度太空任务数量趋势
      • 4.2 各国任务预算箱线图
      • 4.3 任务类型与成功率关系
      • 4.4 卫星类型与预算关系
      • 4.5 技术应用与成功率关系
      • 4.6 环境影响与任务预算关系
      • 4.7 国家与卫星类型分布(高级 Sunburst 图)
      • 4.8 年度任务预算趋势(高级 3D 图)
      • 4.9 各国合作网络(高级网络图)

一、引言

  太空探索是人类科技发展的前沿领域。本文将利用一份涵盖2000年至2025年的全球太空探索数据集,从多个维度进行可视化分析,深入探讨太空任务的分布、技术应用、环境影响及成功率等关键因素。以下分析包含完整 Python 代码,可供读者参考复现。

二、数据探索

2.1 数据集介绍

  数据集包含以下变量:

  • Country:参与太空任务的国家
  • Year:任务年份(2000-2025)
  • Mission Name:任务名称
  • Mission Type:载人或无人任务
  • Launch Site:发射地点
  • Satellite Type:通信/导航/研究卫星
  • Budget (in Billion $):任务预算
  • Success Rate (%):任务成功率
  • Technology Used:使用的技术(如可重复使用火箭、AI导航、太阳能推进)
  • Environmental Impact:环境影响(低/中/高)
  • Collaborating Countries:合作国家
  • Duration (in Days):任务时长(天)

2.2 数据清洗探索

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
from IPython.display import IFrame

# 加载数据
df = pd.read_csv('space_missions_data.csv')  # 请替换为实际文件路径

# 查看数据基本信息
df.info()

  从上图我们可以发现:

  • 数据包含12个维度,涵盖任务特征、技术应用及环境影响;
  • 国家、任务类型、卫星类型等为类别型变量,预算、成功率等为数字型变量;
  • 数据中一共包含3000个样本,而且无缺失值。

三、单维度特征可视化

3.1 各国太空任务数量

plt.figure(figsize=(12, 6))
sns.countplot(x='Country', data=df)
plt.title('Number of Space Missions by Country')
plt.xlabel('Country')
plt.ylabel('Count')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()

  图表含义:展示各国参与太空任务的数量,体现各国在太空探索领域的活跃度。

3.2 任务类型分布

plt.figure(figsize=(8, 6))
sns.countplot(x='Mission Type', data=df)
plt.title('Distribution of Manned vs Unmanned Missions')
plt.xlabel('Mission Type')
plt.ylabel('Count')
plt.tight_layout()
plt.show()

  图表含义:展示载人任务与无人任务的数量对比,反映太空探索的技术成熟度。

3.3 卫星类型分布

plt.figure(figsize=(10, 6))
sns.countplot(x='Satellite Type', data=df)
plt.title('Satellite Type Distribution')
plt.xlabel('Satellite Type')
plt.ylabel('Count')
plt.tight_layout()
plt.show()

  图表含义:展示不同用途卫星的任务分布,体现太空技术的应用方向。

3.4 任务预算分布

plt.figure(figsize=(10, 6))
sns.histplot(df['Budget (in Billion $)'], kde=True, color='skyblue', bins=20)
plt.title('Budget Distribution of Space Missions')
plt.xlabel('Budget (in Billion $)')
plt.tight_layout()
plt.show()

  图表含义:展示太空任务预算的分布情况,反映任务规模与成本投入。

3.5 任务成功率分布

plt.figure(figsize=(10, 6))
sns.histplot(df['Success Rate (%)'], kde=True, color='lightgreen', bins=20)
plt.title('Success Rate Distribution of Space Missions')
plt.xlabel('Success Rate (%)')
plt.tight_layout()
plt.show()

  图表含义:展示太空任务成功率的分布情况,体现任务的可靠性和技术成熟度。

3.6 环境影响分布

plt.figure(figsize=(8, 6))
sns.countplot(x='Environmental Impact', data=df)
plt.title('Environmental Impact Distribution')
plt.xlabel('Environmental Impact')
plt.ylabel('Count')
plt.tight_layout()
plt.show()

  图表含义:展示太空任务的环境影响评估分布,反映太空探索的环保性。

四、各个特征与太空任务关系的可视化

4.1 年度太空任务数量趋势

plt.figure(figsize=(12, 6))
sns.lineplot(x='Year', y='Count', data=df.groupby('Year').size().reset_index(name='Count'))
plt.title('Annual Trend of Space Missions')
plt.xlabel('Year')
plt.ylabel('Number of Missions')
plt.tight_layout()
plt.show()

  图表含义:展示年度太空任务数量的变化趋势,体现太空探索活动的兴衰。

4.2 各国任务预算箱线图

plt.figure(figsize=(12, 6))
sns.boxplot(x='Country', y='Budget (in Billion $)', data=df)
plt.title('Budget Variation by Country')
plt.xlabel('Country')
plt.ylabel('Budget (in Billion $)')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()

  图表含义:展示各国太空任务预算的分布差异,反映各国的经济投入能力。

4.3 任务类型与成功率关系

plt.figure(figsize=(10, 6))
sns.boxplot(x='Mission Type', y='Success Rate (%)', data=df)
plt.title('Success Rate Variation by Mission Type')
plt.xlabel('Mission Type')
plt.ylabel('Success Rate (%)')
plt.tight_layout()
plt.show()

  图表含义:展示不同任务类型的成功率差异,体现任务难度与技术成熟度的关系。

4.4 卫星类型与预算关系

plt.figure(figsize=(12, 6))
sns.boxplot(x='Satellite Type', y='Budget (in Billion $)', data=df)
plt.title('Budget Variation by Satellite Type')
plt.xlabel('Satellite Type')
plt.ylabel('Budget (in Billion $)')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()

  图表含义:展示不同类型卫星任务的预算差异,反映任务复杂度与成本的关系。

4.5 技术应用与成功率关系

plt.figure(figsize=(12, 6))
sns.boxplot(x='Technology Used', y='Success Rate (%)', data=df)
plt.title('Success Rate Variation by Technology Used')
plt.xlabel('Technology Used')
plt.ylabel('Success Rate (%)')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()

图表含义:展示不同技术应用的成功率差异,体现技术创新对任务成功率的影响。

4.6 环境影响与任务预算关系

plt.figure(figsize=(10, 6))
sns.boxplot(x='Environmental Impact', y='Budget (in Billion $)', data=df)
plt.title('Budget Variation by Environmental Impact')
plt.xlabel('Environmental Impact')
plt.ylabel('Budget (in Billion $)')
plt.tight_layout()
plt.show()

  图表含义:展示不同环境影响评估任务的预算差异,反映环保性与任务成本的关系。

4.7 国家与卫星类型分布(高级 Sunburst 图)

fig6 = px.sunburst(df, path=['Country', 'Satellite Type'], title='🌍 Country-wise Satellite Type Distribution')
fig6.write_html("Figure_6.html")
IFrame("Figure_6.html", width="100%", height=600)

  图表含义:通过层级结构展示各国不同类型卫星任务的分布情况,体现国家在不同太空技术领域的布局。

4.8 年度任务预算趋势(高级 3D 图)

fig8 = px.scatter_3d(df, x='Year', y='Budget (in Billion $)', z='Success Rate (%)',
                     color='Country', title='3D View of Annual Budget, Success Rate and Country')
fig8.write_html("Figure_8.html")
IFrame("Figure_8.html", width="100%", height=600)

  图表含义:通过三维散点图展示年度任务预算、成功率与国家之间的关系,体现时空维度下的任务特征。

4.9 各国合作网络(高级网络图)

import networkx as nx
import matplotlib.pyplot as plt

# 创建合作网络
G = nx.Graph()
for index, row in df.iterrows():
    if pd.notna(row['Collaborating Countries']):
        main_country = row['Country']
        collaborating_countries = row['Collaborating Countries'].split(', ')
        for collaborator in collaborating_countries:
            G.add_edge(main_country, collaborator)

# 绘制网络图
plt.figure(figsize=(12, 10))
nx.draw(G, with_labels=True, node_color='skyblue', node_size=2000, edge_color='gray', linewidths=1, font_size=12)
plt.title('Collaboration Network Between Countries')
plt.tight_layout()
plt.show()

  图表含义:通过网络图展示各国之间的太空任务合作关系,体现国际合作在太空探索中的重要性。

  从以上可视化结果可以看出:

  • 年度趋势:太空任务数量呈现逐年增长趋势,尤其在近十年增长显著。
  • 国家差异:美国、中国、俄罗斯等航天大国的任务数量和预算显著高于其他国家。
  • 任务类型:无人任务数量远多于载人任务,但载人任务的成功率通常较高。
  • 技术应用:可重复使用火箭和AI导航技术的应用显著提升了任务成功率。
  • 环境影响:大多数任务的环境影响评估为中等,需进一步优化绿色航天技术。

  以上分析为理解全球太空探索任务的分布特征和技术发展趋势提供了多维度视角,并揭示了各变量之间的潜在关系,为进一步的航天科技研究和政策制定提供了数据支持。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云天徽上

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值