【数据可视化-45】基于Plotly的医疗保健数据集可视化分析

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907

💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。④ 进群免费赠送写作秘籍一份,助你由写作小白晋升为创作大佬。⑤ 进群赠送CSDN评论防封脚本,送真活跃粉丝,助你提升文章热度。有兴趣的加文末联系方式,备注自己的CSDN昵称,拉你进群,互相学习共同进步。

在这里插入图片描述

【数据可视化-45】基于Plotly的医疗保健数据集可视化分析

    • 一、引言
    • 二、数据探索
      • 2.1 数据集介绍
      • 2.2 数据清洗探索
    • 三、单维度特征可视化
      • 3.1 患者年龄分布
      • 3.2 性别比例
      • 3.3 血型分布
      • 3.4 住院时长分布
    • 四、各个特征与医疗费用关系的可视化
      • 4.1 年龄与医疗费用关系
      • 4.2 性别与医疗费用关系
      • 4.3 血型与医疗费用关系
      • 4.4 医疗状况与医疗费用关系
      • 4.5 医院与医疗费用关系
      • 4.6 住院类型与医疗费用关系
      • 4.7 住院时长与医疗费用关系
      • 4.8 医疗状况与住院时长关系
      • 4.9 多维度组合分析(性别、医疗状况与医疗费用)
      • 4.10 多维度组合分析(医院、住院类型与医疗费用)
      • 4.11 多维度组合分析(年龄、性别与医疗费用)
      • 4.12 多维度组合分析(住院时长、性别与医疗费用)

一、引言

  在医疗保健领域,数据分析与可视化对于提升患者护理质量、优化医院运营和降低医疗成本具有重要意义。通过深入分析医疗数据,医疗机构能够更好地理解患者需求、优化资源分配并提高服务质量。本文将利用医疗保健数据集,从多个维度进行可视化分析,揭示影响医疗费用、住院时长和患者满意度的关键因素。该数据集包含16个特征,涵盖了患者基本信息、医疗条件、住院详情和费用等。以下分析将使用Python的Plotly库实现,提供完整的代码示例,以供读者参考和复现。

二、数据探索

2.1 数据集介绍

  医疗保健数据集包含以下变量:

  • Name:患者姓名
  • Age:患者年龄
  • Gender:患者性别
  • Blood Type:患者血型
  • Medical Condition:患者医疗状况
  • Date of Admission:入院日期
  • Doctor:主治医生
  • Hospital:医院名称
  • Insurance Provider:保险公司
  • Billing Amount:账单金额
  • Room Number:病房号
  • Admission Type:入院类型
  • Discharge Date:出院日期
  • Medication:用药情况
  • Test Results:检查结果
  • Length of Stay:住院时长(天)

2.2 数据清洗探索

import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots

# 加载数据
df = pd.read_csv('healthcare_data.csv')  # 请替换为实际文件路径

# 查看数据基本信息
print(df.info())

  从数据基本信息可发现:

  • 数据共16个维度,包含字符串、数值型特征。
  • 数据一共有55500个样本,数字字段无缺失值的存在。

三、单维度特征可视化

3.1 患者年龄分布

fig = px.histogram(df, x='Age', nbins=30, title='Patient Age Distribution')
fig.show()

3.2 性别比例

fig = px.pie(df, names='Gender', title='Gender Distribution')
fig.show()

3.3 血型分布

fig = px.histogram(df, x='Blood Type', title='Blood Type Distribution')
fig.show()

3.4 住院时长分布

fig = px.histogram(df, x='Length of Stay', nbins=20, title='Length of Stay Distribution')
fig.show()

四、各个特征与医疗费用关系的可视化

4.1 年龄与医疗费用关系

fig = px.scatter(df, x='Age', y='Billing Amount', color='Gender', title='Age vs Billing Amount Relationship')
fig.show()

4.2 性别与医疗费用关系

fig = px.box(df, x='Gender', y='Billing Amount', title='Billing Amount Distribution by Gender')
fig.show()

4.3 血型与医疗费用关系

fig = px.box(df, x='Blood Type', y='Billing Amount', title='Billing Amount Distribution by Blood Type')
fig.show()

4.4 医疗状况与医疗费用关系

fig = px.box(df, x='Medical Condition', y='Billing Amount', title='Billing Amount Distribution by Medical Condition')
fig.show()

4.5 医院与医疗费用关系

fig = px.box(df, x='Hospital', y='Billing Amount', title='Billing Amount Distribution by Hospital')
fig.show()

4.6 住院类型与医疗费用关系

fig = px.box(df, x='Admission Type', y='Billing Amount', title='Billing Amount Distribution by Admission Type')
fig.show()

4.7 住院时长与医疗费用关系

fig = px.scatter(df, x='Length of Stay', y='Billing Amount', color='Gender', title='Length of Stay vs Billing Amount Relationship')
fig.show()

4.8 医疗状况与住院时长关系

fig = px.box(df, x='Medical Condition', y='Length of Stay', title='Length of Stay Distribution by Medical Condition')
fig.show()

4.9 多维度组合分析(性别、医疗状况与医疗费用)

fig = px.bar(df, x='Medical Condition', y='Billing Amount', color='Gender', barmode='group', title='Billing Amount by Medical Condition and Gender')
fig.show()

4.10 多维度组合分析(医院、住院类型与医疗费用)

fig = px.bar(df, x='Hospital', y='Billing Amount', color='Admission Type', barmode='group', title='Billing Amount by Hospital and Admission Type')
fig.show()

4.11 多维度组合分析(年龄、性别与医疗费用)

fig = px.scatter_matrix(df, dimensions=['Age', 'Billing Amount'], color='Gender', title='Age vs Billing Amount by Gender')
fig.show()

4.12 多维度组合分析(住院时长、性别与医疗费用)

fig = px.scatter_matrix(df, dimensions=['Length of Stay', 'Billing Amount'], color='Gender', title='Length of Stay vs Billing Amount by Gender')
fig.show()

  从以上可视化分析可以看出:

  • 患者年龄分布:大多数患者集中在中老年年龄段,符合医疗保健领域的普遍规律。
  • 性别比例:男女患者比例较为均衡,但可能因医疗状况不同而有所差异。
  • 血型分布:各血型患者分布相对均匀,未见明显异常。
  • 住院时长分布:住院时长呈现右偏分布,少数患者住院时间较长。
  • 年龄与医疗费用关系:通常存在一定的正相关关系,老年患者的医疗费用较高。
  • 性别与医疗费用关系:可能存在差异,但通常不显著。
  • 血型与医疗费用关系:通常无显著相关性。
  • 医疗状况与医疗费用关系:不同医疗状况的费用差异明显,慢性病和重症通常费用较高。
  • 医院与医疗费用关系:不同医院的费用水平差异显著,可能受设备、服务等因素影响。
  • 住院类型与医疗费用关系:不同住院类型的费用差异明显,紧急入院通常费用较高。
  • 住院时长与医疗费用关系:通常存在正相关关系,住院时间越长,费用越高。
  • 医疗状况与住院时长关系:重症和复杂病情通常住院时长较长。

  这些分析为医疗机构优化资源分配、提升服务质量提供了数据支持,同时也有助于保险公司制定更合理的保险政策。通过深入挖掘医疗数据,各相关方能够更好地满足患者需求,提高医疗保健系统的整体效率和效果。

  **注:**博主目前收集了6900+份相关数据集,有想要的可以领取部分数据:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云天徽上

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值