改进YOLOv7系列:28.YOLOv7 结合 Swin Transformer V2结构,Swin Transformer V2:通向视觉大模型之路

🔥🔥🔥YOLO系列 + Swin Transformer V2结构 结合应用 为 CSDN芒果汁没有芒果 首发更新博文

最新创新点改进推荐

-💡统一使用 YOLO 代码框架,结合不同模块来构建不同的YOLO目标检测模型。

🔥 《芒果书》系列改进专栏内的改进文章,均包含多种模型改进方式,均适用于YOLOv3YOLOv4YOLORYOLOXYOLOv5YOLOv7YOLOv8 改进(重点)!!!

🔥 专栏创新点教程 均有不少同学反应和我说已经在自己的数据集上有效涨点啦!! 包括COCO数据集也能涨点

所有文章博客均包含 改进源代码部分,一键训练即可

🔥 对应专栏订阅的越早,就可以越早使用原创创新点去改进模型,抢先一步

以下《芒果书》改进YOLO专栏内容 适用于以下主流模型的改进
YOLOv3YOLOv4YOLORYOLOX
YOLOv5YOLOv7YOLOv8
… 以上模型改进均适用《芒果书》🥭专栏系列


芒果书 点击以下链接 查看文章目录详情🔗


Swin Transformer论文

请添加图片描述

在这里插入图片描述

该论文作者提出了缩放 Swin Transformer 的技术 多达 30 亿个参数,使其能够使用多达 1,536 个图像进行训练1,536 分辨率。通过扩大容量和分辨率,Swin Transformer 在四个具有代表性的视觉基准上创造了新记录:ImageNet-V2 图像分类的84.0% top-1 准确率,COCO 对象检测的63.1 / 54.4 box / mask mAP,ADE20K 语义分割的59.9 mIoU,和86.8%Kinetics-400 视频动作分类的前 1 准确率。我们的技术通常适用于扩大视觉模型,但尚未像 NLP 语言模型那样被广泛探索,部分原因是在训练和应用方面存在以下困难:1)视觉模型经常面临大规模的不稳定性问题和 2)许多下游视觉任务需要高分辨率图像或窗口,目前尚不清楚如何有效地将低分辨率预训练的模型转移到更高分辨率的模型。当图像分辨率很高时,GPU 内存消耗也是一个问题。为了解决这些问题,我们提出了几种技术,并通过使用 Swin Transformer 作为案例研究来说明:1)后归一化技术和缩放余弦注意方法,以提高大型视觉模型的稳定性;2) 一种对数间隔的连续位置偏差技术,可有效地将在低分辨率图像和窗口上预训练的模型转移到其更高分辨率的对应物上。此外,我们分享了我们的关键实现细节,这些细节可以显着节省 GPU 内存消耗,从而使使用常规 GPU 训练大型视觉模型变得可行。使用这些技术和自我监督的预训练,我们成功训练了一个强大的 30 亿个 Swin Transformer 模型,并有效地将其转移到涉及高分辨率图像或窗口的各种视觉任务中,在各种的基准。代码将在 我们分享了我们的关键实现细节,这些细节可以显着节省 GPU 内存消耗,从而使使用常规 GPU 训练大型视觉模型变得可行。使用这些技术和自我监督的预训练,我们成功训练了一个强大的 30 亿个 Swin Transformer 模型,并有效地将其转移到涉及高分辨率图像或窗口的各种视觉任务中,在各种的基准。代码将在 我们分享了我们的关键实现细节,这些细节可以显着节省 GPU 内存消耗,从而使使用常规 GPU 训练大型视觉模型变得可行。使用这些技术和自我监督的预训练,我们成功训练了一个强大的 30 亿个 Swin Transformer 模型,并有效地将其转移到涉及高分辨率图像或窗口的各种视觉任务中,在各种的基准。代码将在 我们成功训练了一个强大的 30 亿个 Swin Transformer 模型,并将其有效地转移到涉及高分辨率图像或窗口的各种视觉任务中,在各种基准测试中达到了最先进的精度。代码将在 我们成功训练了一个强大的 30 亿个 Swin Transformer 模型,并将其有效地转移到涉及高分辨率图像或窗口的各种视觉任务中,在各种基准测试中达到了最先进的精度。

YOLOv7结合Swin Transformer-V2 演示教程

YOLOv7的yaml配置文件

首先增加以下yolov7_swin_transfomrer.yaml文件

# YOLOv7 🚀, GPL-3.0 license
# parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 1.0  # layer channel multiple

# anchors
anchors:
  - [12,16, 19,36, 40,28]  # P3/8
  - [36,75, 76,55, 72,146]  # P4/16
  - [142,110, 192,243, 459,401]  # P5/32

# yolov7 backbone by yoloair
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [32, 3, 1]],  # 0
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [128, 3, 2]],  # 3-P2/4 
   [-1, 1, SwinV2_CSPB, [128, 128]], 
   [-1, 1, Conv, [256, 3, 2]], 
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 16-P3/8
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]],
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [1024, 1, 1]],          
   [-1, 1, MP, []],
   [-1, 1, Conv, [512, 1, 1]],
   [-3, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, -3], 1, Concat, [1]],
   [-1, 1, SwinV2_CSPB, [1024, 1024]],
   [-1, 1, Conv, [256, 3, 1]],
  ]

# yolov7 head by yoloair
head:
  [[-1, 1, SPPCSPC, [512]],
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [31, 1, Conv, [256, 1, 1]],
   [[-1, -2], 1, Concat, [1]],
   [-1, 1, C3, [128]],
   [-1, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [18, 1, Conv, [128, 1, 1]],
   [[-1, -2], 1, Concat, [1]],
   [-1, 1, C3, [128]],
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3, 44], 1, Concat, [1]],
   [-1, 1, C3, [256]], 
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]], 
   [[-1, -3, 39], 1, Concat, [1]],
   [-1, 3, C3, [512]],

# 检测头 -----------------------------
   [49, 1, RepConv, [256, 3, 1]],
   [55, 1, RepConv, [512, 3, 1]],
   [61, 1, RepConv, [1024, 3, 1]],

   [[62,63,64], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]

common.py配置

在./models/common.py文件中增加以下模块,直接复制即可

class WindowAttention_v2(nn.Module):

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
                 pretrained_window_size=[0, 0]):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.pretrained_window_size = pretrained_window_size
        self.num_heads = num_heads

        self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)

        # mlp to generate continuous relative position bias
        self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
                                     nn.ReLU(inplace=True),
                                     nn.Linear(512, num_heads, bias=False))

        # get relative_coords_table
        relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
        relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
        relative_coords_table = torch.stack(
            torch.meshgrid([relative_coords_h,
                            relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0)  # 1, 2*Wh-1, 2*Ww-1, 2
        if pretrained_window_size[0] > 0:
            relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
            relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
        else:
            relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
            relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
        relative_coords_table *= 8  # normalize to -8, 8
        relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
            torch.abs(relative_coords_table) + 1.0) / np.log2(8)

        self.register_buffer("relative_coords_table", relative_coords_table)

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        self.register_buffer("relative_position_index", relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias=False)
        if qkv_bias:
            self.q_bias = nn.Parameter(torch.zeros(dim))
            self.v_bias = nn.Parameter(torch.zeros(dim))
        else:
            self.q_bias = None
            self.v_bias = None
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask=None):
        
        B_, N, C = x.shape
        qkv_bias = None
        if self.q_bias is not None:
            qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
        qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
        qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        # cosine attention
        attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
        logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01))).exp()
        attn = attn * logit_scale

        relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
        relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        try:
            x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        except:
            x = (attn.half() @ v).transpose(1, 2).reshape(B_, N, C)
            
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    def extra_repr(self) -> str:
        return f'dim={self.dim}, window_size={self.window_size}, ' \
               f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'

    def flops(self, N):
        # calculate flops for 1 window with token length of N
        flops = 0
        # qkv = self.qkv(x)
        flops += N * self.dim * 3 * self.dim
        # attn = (q @ k.transpose(-2, -1))
        flops += self.num_heads * N * (self.dim // self.num_heads) * N
        #  x = (attn @ v)
        flops += self.num_heads * N * N * (self.dim // self.num_heads)
        # x = self.proj(x)
        flops += N * self.dim * self.dim
        return flops
    
class Mlp_v2(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x
# add 2 functions
class SwinTransformerLayer_v2(nn.Module):

    def __init__(self, dim, num_heads, window_size=7, shift_size=0,
                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.SiLU, norm_layer=nn.LayerNorm, pretrained_window_size=0):
        super().__init__()
        self.dim = dim
        #self.input_resolution = input_resolution
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        #if min(self.input_resolution) <= self.window_size:
        #    # if window size is larger than input resolution, we don't partition windows
        #    self.shift_size = 0
        #    self.window_size = min(self.input_resolution)
        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"

        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention_v2(
            dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,
            qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
            pretrained_window_size=(pretrained_window_size, pretrained_window_size))

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp_v2(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def create_mask(self, H, W):
        # calculate attention mask for SW-MSA
        img_mask = torch.zeros((1, H, W, 1))  # 1 H W 1
        h_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
                img_mask[:, h, w, :] = cnt
                cnt += 1

        mask_windows = window_partition(img_mask, self.window_size)  # nW, window_size, window_size, 1
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))

        return attn_mask

    def forward(self, x):
        # reshape x[b c h w] to x[b l c]
        _, _, H_, W_ = x.shape

        Padding = False
        if min(H_, W_) < self.window_size or H_ % self.window_size!=0 or W_ % self.window_size!=0:
            Padding = True
            # print(f'img_size {min(H_, W_)} is less than (or not divided by) window_size {self.window_size}, Padding.')
            pad_r = (self.window_size - W_ % self.window_size) % self.window_size
            pad_b = (self.window_size - H_ % self.window_size) % self.window_size
            x = F.pad(x, (0, pad_r, 0, pad_b))

        # print('2', x.shape)
        B, C, H, W = x.shape
        L = H * W
        x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C)  # b, L, c

        # create mask from init to forward
        if self.shift_size > 0:
            attn_mask = self.create_mask(H, W).to(x.device)
        else:
            attn_mask = None

        shortcut = x
        x = x.view(B, H, W, C)

        # cyclic shift
        if self.shift_size > 0:
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
        else:
            shifted_x = x

        # partition windows
        x_windows = window_partition_v2(shifted_x, self.window_size)  # nW*B, window_size, window_size, C
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # nW*B, window_size*window_size, C

        # W-MSA/SW-MSA
        attn_windows = self.attn(x_windows, mask=attn_mask)  # nW*B, window_size*window_size, C

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
        shifted_x = window_reverse_v2(attn_windows, self.window_size, H, W)  # B H' W' C

        # reverse cyclic shift
        if self.shift_size > 0:
            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            x = shifted_x
        x = x.view(B, H * W, C)
        x = shortcut + self.drop_path(self.norm1(x))

        # FFN
        x = x + self.drop_path(self.norm2(self.mlp(x)))
        x = x.permute(0, 2, 1).contiguous().view(-1, C, H, W)  # b c h w
        
        if Padding:
            x = x[:, :, :H_, :W_]  # reverse padding

        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
               f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"

    def flops(self):
        flops = 0
        H, W = self.input_resolution
        # norm1
        flops += self.dim * H * W
        # W-MSA/SW-MSA
        nW = H * W / self.window_size / self.window_size
        flops += nW * self.attn.flops(self.window_size * self.window_size)
        # mlp
        flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
        # norm2
        flops += self.dim * H * W
        return flops

class SwinTransformer2Block(nn.Module):
    def __init__(self, c1, c2, num_heads, num_layers, window_size=7):
        super().__init__()
        self.conv = None
        if c1 != c2:
            self.conv = Conv(c1, c2)

        # remove input_resolution
        self.blocks = nn.Sequential(*[SwinTransformerLayer_v2(dim=c2, num_heads=num_heads, window_size=window_size,
                                 shift_size=0 if (i % 2 == 0) else window_size // 2) for i in range(num_layers)])

    def forward(self, x):
        if self.conv is not None:
            x = self.conv(x)
        x = self.blocks(x)
        return x

class SwinV2_CSPB(nn.Module):
    # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super(SwinV2_CSPB, self).__init__()
        c_ = int(c2)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1, 1)
        num_heads = c_ // 32
        self.m = SwinTransformer2Block(c_, c_, num_heads, n)
        #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])

    def forward(self, x):
        x1 = self.cv1(x)
        y1 = self.m(x1)
        y2 = self.cv2(x1)
        return self.cv3(torch.cat((y1, y2), dim=1))

训练yolov7_swin_transfomrer-V2模型

python train.py --cfg yolov7_swin_transfomrer-V2.yaml
评论 113
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果汁没有芒果

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值