- 💡该教程包含大量的原创首发改进方式, 所有文章都是原创首发改进内容🚀
降低改进难度,改进点包含最新最全的Backbone部分、Neck部分、Head部分、注意力机制部分、自注意力机制部分等完整教程🚀 - 💡本篇文章基于
基于 YOLOv5、、YOLOv8等网络结合最新Extended efficient Layer Aggregation Networks结构,高效的聚合网络设计,打造高性能、轻量级检测器 改进。代码直接运行🚀 - 重点:🔥🔥🔥有不少同学已经反应 该专栏的教程 提供的网络结构 在自有数据集上
有效涨点!!! - 🌟专栏读者有问题可以私信博主
- YOLOv8已经更新
文章目录
参数
Model Summary: 275 layers, 5732029 parameters, 5732029 gradients, 12.3 GFLOPs
网络结构图

一、论文理论部分 + YOLOv5、YOLOv8代码改进

该模
本教程详细介绍了如何在YOLOv5、YOLOv8和YOLOX系列中结合最新的高效Layer Aggregation Networks(ELAN)结构,通过源代码改进,提升检测器的性能和效率。内容包括ELAN的理论分析、代码实现步骤以及针对不同YOLO版本的配置调整。
订阅专栏 解锁全文
468

被折叠的 条评论
为什么被折叠?



