YOLOv7改进ASFF系列:最新结合Adaptively Spatial Feature Fusion自适应空间特征融合结构(内附代码),提高特征尺度不变性

本文介绍了如何在YOLOv7中应用Adaptively Spatial Feature Fusion(ASFF)以增强特征尺度不变性。通过学习空间过滤冲突信息,ASFF减少了基于特征金字塔的单次检测器的不一致性。文章详细阐述了ASFF的理论、方法和代码改进,包括在YOLOv7和YOLOv5系列中的应用,并提供了相应的实验结果。
摘要由CSDN通过智能技术生成
  • 💡该教程包含大量的原创首发改进方式, 所有文章都是原创首发改进内容🚀
    降低改进难度,改进点包含最新最全的Backbone部分、Neck部分、Head部分、注意力机制部分、自注意力机制部分等完整教程🚀
  • 💡本篇文章基于 基于 YOLOv7、YOLOv7-tiny、YOLOv5 等网络结合 ASFF 自适应空间特征融合结构,提高特征尺度不变性 改进。代码直接运行🚀
  • 重点:有不少读者已经反映该专栏的改进在自有数据集上有效涨点!!!同时COCO也能涨点
  • 🌟专栏读者有问题可以私信博主,看到了就会回复.
  • 全文一共约24300字数

参数

yolov7-tiny

Model Summary: 342 layers, 11666559 parameters, 11666559 gr
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>